RESUMEN
Tetracycline (TC), which is ubiquitous in the aquatic environment, can cause ecological imbalance and adversely affect human health. Therefore, a quick, inexpensive, and easy method for the detection of TC in water systems is highly desirable. This study reports the development of a novel electrochemical sensor from waste peanut shell for the quick detection of TC in water. Raman and TEM lattice mapping analyses confirmed the successful preparation of graphene -like biochar from waste peanut shells (PSs) via hydrothermal and pyrolysis processes. An electrochemical sensor, PS@glassy carbon electrode (PS@GCE), was then developed by coating the prepared graphene-like biochar on the surface of a glass electrode to enhance its conductivity. The feasibility of using this sensor for the detection of TC in the aqueous system was investigated. The PS@GCE sensor exhibited excellent sensitivity with a low detection limit of 3.6 × 10--9 nM and a linear range of 10-10-102 µM. These results were attributed to the large specific surface area and high conductivity, of the PS biochar. The stability of the PS@GCE sensor was also investigated in the presence of TC (10-4 M) and interfering species (10-2 M) and recovery rates in the range of 86.4%-116.0% were achieved, thus indicating the absence of an interference range of range of 84.3%-98.2% with relative standard deviation lower than 6% were achieved upon the detection of TC in natural water samples using the designed sensor, thus confirming the superior repeatability of the PS@GCE sensor. Consequently, the designed electrode has a high potential for application in the detection of TC in natural aqueous systems.
RESUMEN
A palladium-catalyzed regiospecific decarboxylative ε-allylation of (cyclohexadienylidene)malononitriles is presented for the synthesis of functionalized α-allyl-α-aryl malononitriles. This reaction proceeds via a resonance-stabilized α-aryl malononitrile anion, resulting in a wide range of α-allyl-α-aryl malononitriles in high yields with excellent linear product selectivity. We have also shown that the resulting products can be transformed into valuable synthetic intermediates by decyanation and Mizoroki-Heck arylation. In addition, an enantioselective decarboxylative allylation reaction is also presented.
RESUMEN
A protocol in the preparation of functionalized N-allyl-N-aryl sulfonamides via palladium-catalyzed intramolecular decarboxylative N-allylation reaction is presented. The alkylated 2,5-cyclohexadienyl ketoesters reacted with arylsulfonamides in the presence of titanium tetrachloride and pyridine, which allows the formation of alkylated 2,5-cyclohexadienyl sulfonyl iminoesters which then undergo a palladium-catalyzed intramolecular allylic amidation through decarboxylative aromatization to provide functionalized N-allyl-N-aryl sulfonamides. This allylation protocol proceeds with good regioselectivity. Moreover, we have also shown that N-allyl-N-aryl sulfonamide can be transformed into 4-aryl-1,2,3,4-tetrahydroquinoline and nitrogen-containing ß-hydroxysulfide bioactives.
RESUMEN
Lung cancer is the most commonly diagnosed cancer worldwide, and metastasis in lung cancer is the leading cause of cancer-related deaths. Thus, understanding the mechanism of lung cancer metastasis will improve the diagnosis and treatment of lung cancer patients. Herein, we found that expression of cluster of differentiation 109 (CD109) was correlated with the invasive and metastatic capacities of lung adenocarcinoma cells. CD109 is upregulated in tumorous tissues, and CD109 overexpression was associated with tumor progression, distant metastasis, and a poor prognosis in patient with lung adenocarcinoma. Mechanistically, expression of CD109 regulates protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling via its association with the epidermal growth factor receptor (EGFR). Inhibition of CD109 decreases EGFR phosphorylation, diminishes EGF-elicited activation of AKT/mTOR, and sensitizes tumor cells to an EGFR inhibitor. Taken together, our results show that CD109 is a potential diagnostic and therapeutic target in lung cancer patients.
Asunto(s)
Adenocarcinoma del Pulmón/patología , Antígenos CD/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Antígenos CD/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Fosforilación , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de SeñalRESUMEN
Temozolomide (TMZ) is a first-line chemotherapeutic agent used against glioblastoma multiforme (GBM), but this disease exhibits recurrence and high lethality. Therefore, it is critical to explore biomarkers which involve in drug resistance and can be represented as different therapeutic effects after a diagnosis. We attempted to investigate the underlying variably expressed genes that contribute to the formation of resistance to TMZ. We analyzed gene and microRNA (miR) data from GBM patients in The Cancer Genome Atlas (TCGA) database to identify genetic factors associated with poor TMZ efficacy. By conducting a gene set enrichment analysis (GSEA), the epithelial-to-mesenchymal transition (EMT) was associated with poor TMZ responses. To identify roles of microRNAs in regulating TMZ resistance, a differential microRNA analysis was performed in TMZ-treated GBM patients. Downregulation of miR-140 was significantly correlated with poor survival. By integrating TCGA transcriptomic data and genomics of drug sensitivity in cancer (GDSC), cathepsin B (CTSB) was inversely associated with miR-140 expression and poor TMZ efficacy. By a pan-cancer analysis, both miR-140 and CTSB were found to be prognostic factors in other cancer types. We also identified that CTSB was a direct target gene of miR-140. Overexpression of miR-140 reduced CTSB levels, enhanced TMZ cytotoxicity, suppressed the mesenchymal transition, and influenced CTSB-regulated tumor sphere formation and stemness marker expression. In contrast, overexpression of CTSB decreased TMZ-induced glioma cell death, promoted the mesenchymal transition, and attenuated miR-140-increased TMZ cytotoxicity. These findings provide novel targets to increase the therapeutic efficacy of TMZ against GBM.
Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Catepsina B/genética , Transición Epitelial-Mesenquimal , Glioblastoma/tratamiento farmacológico , MicroARNs , Temozolomida/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Modelos de Riesgos Proporcionales , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Temozolomida/uso terapéuticoRESUMEN
A strategy toward the preparation of substituted allyl aryl ethers from benzoic acids via a dearomatization and decarboxylative allylation (DcA) reaction is presented. The benzoic acids undergo a dearomatization to give alkylated 2,5-cyclohexadienyl ketoesters which are subjected to a palladium-catalyzed DcA reaction, providing a variety of functionalized allyl aryl ethers. In addition, the combination of a resonance stabilized DcA reaction with a Claisen rearrangement for the synthesis of multisubstituted phenols and applying to dihydroplicatin B derivative synthesis is also presented.
RESUMEN
Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT: Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.
Asunto(s)
Astrocitos/efectos de los fármacos , Proteína GAP-43/biosíntesis , Proteína GAP-43/genética , Gliosis/genética , Microglía/efectos de los fármacos , FN-kappa B/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Factor de Transcripción STAT3/genética , Receptor Toll-Like 4/genética , Animales , Citocinas/biosíntesis , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Activación de Macrófagos/efectos de los fármacos , Neuronas , Fosforilación , Ratas , Ratas Sprague-Dawley , Transactivadores/biosíntesis , Transactivadores/genética , Factores de TranscripciónRESUMEN
BACKGROUND: Homeostasis of reactive oxygen species (ROS) in the skin is regulated by antioxidant defenses. The inflammatory states of skin diseases which range from acute rashes to chronic conditions are related to the level of ROS. The involvement of superoxide dismutase (SOD) in restoring the antioxidant capacity can then neutralize the inflammatory response. RESULTS: We found that denatured Tat-SOD formulated in an aqueous medium could be delivered into mouse skin and the penetration signals of Tat-SOD were detected in the epidermis and dermis. According to immunohistochemical staining, Tat-SOD successfully suppressed inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), the expression of sodium nitroferricyanide (SNP)-induced cyclooxygenase-2 (COX-2), and the production of nitrotyrosine proteins. In nerve growth factor (NGF) induced differentiated PC12 pheochromocytoma cells, we demonstrated that the denatured Tat-SOD regained its antioxidant activity and effectively protected PC12 cells from DNA fragmentation induced by paraquat. Using a luciferase reporter assay, the data was shown Tat-SOD protected PC12 cells from ROS damage, through suppression of COX-2 or nuclear factor-κB (NF-κB) activity occurred at the transcriptional level. CONCLUSION: We showed that Tat-SOD inhibited SNP-induced COX-2 expression similarly to celecoxib and prevented the formation of peroxynitrite as 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The results suggest that denatured Tat-SOD solution may perform potential protein therapy for patients suffering from disorders related to ROS.
Asunto(s)
Ciclooxigenasa 2/biosíntesis , Dermatitis , Regulación Enzimológica de la Expresión Génica , Ácido Peroxinitroso/metabolismo , Piel , Superóxido Dismutasa , Transducción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Animales , Celecoxib/farmacología , Ciclooxigenasa 2/genética , Dermatitis/enzimología , Dermatitis/genética , Dermatitis/patología , Dermatitis/terapia , Humanos , Ratones , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión , Piel/metabolismo , Piel/patología , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
BACKGROUND: Thrombus formation, a phenomenon primarily related to increased platelet activation, plays a key role in cardiovascular and cerebrovascular diseases. Although the established antiplatelet agents, such as aspirin and clopidogrel, have been shown to be beneficial in treating thromboembolic diseases, they have considerable limitations. Hence, the development of more effective and safe antithrombotic agents is necessary to satisfy a substantial unmet clinical need. In recent years, the favorable properties of imidazole-related drugs have prompted medicinal chemists to synthesize numerous novel therapeutic agents. The chemical structure of the benzimidazole backbone has proven antiplatelet properties. Moreover, synthetic oligosaccharides have exhibited antiplatelet properties. Therefore, we developed a new aldo-benzimidazole-derived oligosaccharide compound, M3BIM, for achieving a stronger antiplatelet effect than the drugs which are being used in clinical aspects. We investigated the effects of M3BIM on platelet activation ex vivo and its antithrombotic activity in vivo. RESULTS: M3BIM (10-50 µM) exhibited a more potent activity in inhibiting platelet aggregation stimulated by collagen than it did in inhibiting that stimulated by thrombin in washed human platelets. The M3BIM treatment revealed no cytotoxicity in zebrafish embryos, even at the highest concentration of 100 µM. In addition, M3BIM inhibited the phosphorylation of phospholipase Cγ2, protein kinase C (PKC), and mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase 2 and c-Jun N-terminal kinase 1), and markedly reduced the ATP-release reaction and intracellular calcium mobilization in collagen-activated platelets. By contrast, M3BIM showed no effects on either collagen-induced p38 MAPK and Akt phosphorylation or phorbol 12, 13-dibutyrate-induced PKC activation and platelet aggregation. Moreover, the M3BIM treatment substantially prolonged the closure time in human whole blood, and increased the occlusion time in mesenteric microvessels and attenuated cerebral infarction in mice. For the study of anticoagulant activities, M3BIM showed no significant effects in the prolongation of activated partial thromboplastin time and prothrombin time in mice. CONCLUSION: The findings of our study suggest that M3BIM is a potential therapeutic agent for preventing or treating thromboembolic disorders.
Asunto(s)
Bencimidazoles , Plaquetas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Tromboembolia/tratamiento farmacológico , Trisacáridos , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Plaquetas/patología , Humanos , Ratones , Tromboembolia/metabolismo , Tromboembolia/patología , Trisacáridos/química , Trisacáridos/farmacología , Pez CebraRESUMEN
Bright fluorescent molecules with long fluorescence lifetimes are important for the development of lifetime-based fluorescence imaging techniques. Herein, a molecular design is described for simultaneously attaining long fluorescence lifetime (τ) and high brightness (ΦF ×É) in a system that features macrocyclic dimerization of fluorescent π-conjugated skeletons with flexible linkers. An alkylene-linked macrocyclic dimer of bis(thienylethynyl)anthracene was found to show excimer emission with a long fluorescence lifetime (τ≈19â ns) in solution, while maintaining high brightness. A comparison with various relevant derivatives revealed that the macrocyclic structure and the length of the alkylene chains play crucial roles in attaining these properties. Inâ vitro time-gated imaging experiments were conducted as a proof-of-principle for the superiority of this macrocyclic fluorophore relative to the commercial fluorescent dye Alexa Fluorâ 488.
RESUMEN
COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1-defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5- and DR-green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Benzamidas/farmacología , Reparación del ADN/efectos de los fármacos , Ribonucleótido Reductasas/antagonistas & inhibidores , Tiazoles/farmacología , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Benzamidas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Femenino , Xenoinjertos , Humanos , Ratones Endogámicos NOD , Pruebas de Mutagenicidad , Trasplante de Neoplasias , Tiazoles/uso terapéutico , Pez CebraRESUMEN
BACKGROUND: Mutations in mitogen-activated protein kinase (MAPK) kinase 1 (MEK1) that occur during cell proliferation and tumor formation are well described. Information on the roles of MEK2 in these effects is still limited. We established a constitutive MEK2 transgenic zebrafish, Tg(krt14:MEK2S219D-GFP), to elucidate the role of MEK2 in skin tumor formation. RESULTS: We found that both constitutive MEK2 and MEK1 are able to phosphorylate the extracellular signal-regulated kinase 1 (ERK1) protein. Transient expression of constitutive MEK2 and MEK1 in the zebrafish epidermis induced papillary formation at 48 h post-fertilization, but no effects were observed due to the expression of MEK1, MEK2, or the dominant negative form of MEK2. The transgenic zebrafish, Tg(krt14:MEK2S219D-GFP), developed skin papillomas in the epidermis within 6 days post-fertilization (dpf). The phospho-ERK signal was detected in section of skin papillomas in an immunohistochemical experiment. Treatment with 50 µM of the MEK inhibitor, U0126, had significantly decreased the skin papilloma formation in Tg(krt14:MEK2S219D-GFP) zebrafish by 6 dpf. In vitro and in vivo proliferation assay in COS-1 cells and in Tg(krt14:MEK2S219D-GFP) transgenic fish show significantly increased cell number and Ki-67 signaling. CONCLUSION: Our data indicate that MEK2 is sufficient to induce epidermal papilloma formation through MAPK signaling in zebrafish, and this transgenic model can be used as a new platform for drug screening.
Asunto(s)
MAP Quinasa Quinasa 2/metabolismo , Papiloma/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Activación Enzimática/genética , MAP Quinasa Quinasa 2/genética , Papiloma/genética , Neoplasias Cutáneas/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Induction of interferons (IFNs) produces an innate immune response through activation of the JAK-STAT signaling pathway. Type I IFN signaling activates downstream gene expression through the IFN-stimulated gene factor 3 (ISGF3) complex, while type II IFN (IFN-γ) signaling is mediated through active STAT1 protein. The IFN target gene Mx is involved in the defense against viral infection. However, the mechanism by which Tetraodon (pufferfish) Mx is regulated by IFN signaling has not been identified. In this study, we describe the cloning and expression of Tetraodon STAT1, STAT2, and IFN regulatory factor 9 (IRF9). By combining constitutively-active STAT1 (STAT1-JH1) and STAT2 (STA2-JH1) fusion proteins with IRF9, we demonstrate that a constitutively-active ISGF3 complex increases the transcriptional activity of the Tetraodon Mx promoter via direct binding to two IFN-stimulated response element (ISRE) sites. In addition, a constitutively-active TnIRF9-S2C containing a fusion of the C-terminal region of STAT2 and IRF9 also activated the Mx promoter through binding to the ISRE sites. Furthermore, constitutively-active STAT1-JH1 elevates Mx promoter activity through two IFN gamma-activated sequence (GAS) elements. The Mx promoter is also activated by constitutively-active TnIRF9-S2C and STAT1-JH1 protein, as determined using an in vivo luciferase assay. We conclude that the Tetraodon Mx gene is activated via Type I (IFN-1) and Type II (IFN-γ) signaling. These results provide mechanistic insights into the role of IFN signaling in teleosts, and the in vivo luciferase assay may be suitable as a tool for studying induction and regulation by IFNs in teleost fish.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Tetraodontiformes/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Clonación Molecular , ADN Complementario , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Datos de Secuencia Molecular , Proteínas de Resistencia a Mixovirus/genética , Filogenia , Regiones Promotoras Genéticas , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética , Transducción de SeñalRESUMEN
A carboxylate-directed regioselective Heck-type alkenylation and alkenylative lactonization of (E)-ß,γ-unsaturated carboxylic acids by simply substrate control is reported. (E)- and (Z)-alkenyl bromides reacted to give energetically more favorable palladacyles, allowing access to fully stereocontrolled conjugated 1,3-dienes and alkenyled γ-lactones. Mechanistic studies suggest that excellent regioselectivity may be strongly influenced by the steric factors of reactants involved in the palladacycle intermediates.
RESUMEN
Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.
Asunto(s)
Antioxidantes , Quitosano , Nanopartículas Capa por Capa , Ácido Poliglutámico , Polisacáridos , Quercetina , Pez Cebra , Zeína , Animales , Humanos , Masculino , Ratas , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antioxidantes/farmacología , Antioxidantes/química , Vasos Sanguíneos/efectos de los fármacos , Quitosano/química , Portadores de Fármacos/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Nanopartículas Capa por Capa/química , Peso Molecular , Tamaño de la Partícula , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Quercetina/farmacología , Quercetina/química , Zeína/químicaRESUMEN
We developed mesoporous silica nanoparticle (MSN) as a multifunctional vehicle for enzyme delivery. Enhanced transmembrane delivery of a superoxide dismutase (SOD) enzyme embedded in MSN was demonstrated. Conjugation of the cell-penetrating peptide derived from the human immunodeficiency virus 1 (HIV) transactivator protein (TAT) to mesoporous silica nanoparticle is shown to be an effective way to enhance transmembrane delivery of nanoparticles for intracellular and molecular therapy. Cu,Zn-superoxide dismutase (SOD) is a key antioxidant enzyme that detoxifies intracellular reactive oxygen species, ROS, thereby protecting cells from oxidative damage. In this study, we fused a human Cu,Zn-SOD gene with TAT in a bacterial expression vector to produce a genetic in-frame His-tagged TAT-SOD fusion protein. The His-tagged TAT-SOD fusion protein was expressed in E. coli using IPTG induction and purified using FMSN-Ni-NTA. The purified TAT-SOD was conjugated to FITC-MSN forming FMSN-TAT-SOD. The effectiveness of FMSN-TAT-SOD as an agent against ROS was investigated, which included the level of ROS and apoptosis after free radicals induction and functional recovery after ROS damage. Confocal microscopy on live unfixed cells and flow cytometry analysis showed characteristic nonendosomal distribution of FMSN-TAT-SOD. Results suggested that FMSN-TAT-SOD may provide a strategy for the therapeutic delivery of antioxidant enzymes that protect cells from ROS damage.
Asunto(s)
Membrana Celular/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Superóxido Dismutasa/química , Apoptosis , Membrana Celular/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Microscopía Confocal , Tamaño de la Partícula , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Propiedades de Superficie , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
A strategy for the synthesis of dibenz[a,j]anthracenes (DBAs) from cyclohexa-2,5-diene-1-carboxylic acids is presented. Our approach involves sequential C-H olefination, cycloaddition, and decarboxylative aromatization. In the key step for DBA skeleton construction, the bis-C-H olefination products, 1,3-dienes, are utilized as substrates for [4 + 2] cycloaddition with benzyne. This concise synthetic route allows for regioselective ring formation and functional group introduction. The structural features and photophysical properties of the resulting DBA molecules are discussed.
RESUMEN
Low-molecular-weight chitosan (LMWCS) damaged cell membranes in zebrafish showed its possibility to release reporter proteins for detection. In this study, we developed a simple fluorometric-based assay for the evaluation of clinical antiangiogenic drugs using LMWCS and Tg(fli1:EGFP) transgenic zebrafish, which expressed green-fluorescence protein (GFP) in the endothelial cells of blood vessel. In vitro stable and transiently transfected cell lines was released luciferase and green fluorescent protein (GFP) for intensity evaluation upon LMWCS fluorometric-based assay. In vivo Tg(fli1:EGFP) transgenic zebrafish was also released GFP from endothelial cells of blood vessels and show an increase of fluorescent intensity upon LMWCS fluorometric-based assay. Treatment with the clinical antiangiogenic drug sorafenib and analyzed by LMWCS fluorometric-based assay showed significantly reduction of angiogenesis. Furthermore, treatment with 2 µM sorafenib showed a significant reduction in angiogenesis of the intersegmental vein (ISV) and dorsal longitudinal anastomotic vessels (DLAV) in Tg(fli1:EGFP) transgenic zebrafish. Fluorescence intensity reduction from 2 µM sorafenib was used as a factor in the LMWCS fluorescence-based assay for relative antiangiogenic evaluation. Relative angiogenesis evaluation of the clinical drugs axitinib, cabozantinib, and regorafenib showed a significant reduction. Collectively, this study provided a simple, convenient, and rapid LMWCS fluorometric-based assay for evaluating angiogenic drugs using transgenic zebrafish.
Asunto(s)
Inhibidores de la Angiogénesis , Quitosano , Animales , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Sorafenib , Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/metabolismoRESUMEN
BACKGROUND: The invasion-metastasis cascade of cancer involves a process of parallel progression. A biological interface (module) in which cells is linked with ECM (extracellular matrix) by CAMs (cell adhesion molecules) has been proposed as a tool for tracing cancer spatiotemporal dynamics. METHODS: A mathematical model was established to simulate cancer cell migration. Human uterine leiomyoma specimens, in vitro cell migration assay, quantitative real-time PCR, western blotting, dynamic viscosity, and an in vivo C57BL6 mouse model were used to verify the predictive findings of our model. RESULTS: The return to origin probability (RTOP) and its related CAM expression ratio in tumors, so-called "tumor self-seeding", gradually decreased with increased tumor size, and approached the 3D Pólya random walk constant (0.340537) in a periodic structure. The biphasic pattern of cancer cell migration revealed that cancer cells initially grew together and subsequently began spreading. A higher viscosity of fillers applied to the cancer surface was associated with a significantly greater inhibitory effect on cancer migration, in accordance with the Stokes-Einstein equation. CONCLUSION: The positional probability and cell-CAM-ECM interface (module) in the fractal framework helped us decipher cancer spatiotemporal dynamics; in addition we modeled the methods of cancer control by manipulating the microenvironment plasticity or inhibiting the CAM expression to the Pólya random walk, Pólya constant.
Asunto(s)
Fractales , Modelos Biológicos , Microambiente Tumoral , Animales , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Simulación por Computador , Difusión , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Leiomioma/genética , Ratones , Ratones Endogámicos C57BL , Neoplasias de los Músculos/metabolismo , Neoplasias de los Músculos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Neoplasias Uterinas/genética , ViscosidadRESUMEN
The blood-brain barrier (BBB) is a highly selective cellular barrier that tightly controls the microenvironment of the central nervous system to restrict the passage of substances, which is a primary challenge in delivering therapeutic drugs to treat brain diseases. This study aimed to develop simple surface modifications of mesoporous silica nanoparticles (MSNs) without external stimuli or receptor protein conjugation, which exhibited a critical surface charge and size allowing them to cross the BBB. A series of MSNs with various charges and two different sizes of 50 and 200 nm were synthesized, which showed a uniform mesoporous structure with various surface zeta potentials ranging from +42.3 to -51.6 mV. Confocal microscopic results showed that 50 nm of strongly negatively charged N4-RMSN50@PEG/THPMP (â¼-40 mV) could be significantly observed outside blood vessels of the brain in Tg(zfli1:EGFP) transgenic zebrafish embryos superior to the other negatively charged MSNs. However, very few positively charged MSNs were found in the brain, indicating that negatively charged MSNs could successfully penetrate the BBB. The data were confirmed by high-resolution images of 3D deconvoluted confocal microscopy and two-photon microscopy and zebrafish brain tissue sections. In addition, while increasing the size to 200 nm but maintaining the similar negative charge (â¼40 mV), MSNs could not be detected in the brain of zebrafish, suggesting that transport across the BBB based on MSNs occurred in charge- and size-dependent manners. No obvious cytotoxicity was observed in the CTX-TNA2 astrocyte cell line and U87-MG glioma cell line treated with MSNs. After doxorubicin (Dox) loading, N4-RMSN50@PEG/THPMP/Dox enabled drug delivery and pH-responsive release. The toxicity assay showed that N4-RMSN50@PEG/THPMP could reduce Dox release, resulting in the increase of the survival rate in zebrafish. Flow cytometry demonstrated N4-RMSN50@PEG/THPMP had few cellular uptakes. Protein corona analysis revealed three transporter proteins, such as afamin, apolipoprotein E, and basigin, could contribute to BBB penetration, validating the possible mechanism of N4-RMSN50@PEG/THPMP crossing the BBB. With this simple approach, MSNs with critical negative charge and size could overcome the BBB-limiting characteristics of therapeutic drug molecules; furthermore, their use may also cause drug sustained-release in the brain, decreasing peripheral toxicity.