Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Immunol ; 18(5): 541-551, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288099

RESUMEN

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Asunto(s)
Clostridiales/fisiología , Colitis Ulcerosa/inmunología , Colon/fisiología , Firmicutes/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microbiota , ARN Ribosómico 16S/análisis , Animales , Biodiversidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colon/microbiología , Sulfato de Dextran , Heces/microbiología , Interacción Gen-Ambiente , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/inmunología , Simbiosis , Gemelos Monocigóticos
3.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566882

RESUMEN

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Asunto(s)
Autoinmunidad/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Autoinmunidad/genética , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Encefalomielitis Autoinmune Experimental/genética , Factores Eucarióticos de Iniciación , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/microbiología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/inmunología , FN-kappa B/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/inmunología , Factor 6 Asociado a Receptor de TNF/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
4.
Nature ; 591(7849): 300-305, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33505023

RESUMEN

The inflammasome initiates innate defence and inflammatory responses by activating caspase-1 and pyroptotic cell death in myeloid cells1,2. It consists of an innate immune receptor/sensor, pro-caspase-1, and a common adaptor molecule, ASC. Consistent with their pro-inflammatory function, caspase-1, ASC and the inflammasome component NLRP3 exacerbate autoimmunity during experimental autoimmune encephalomyelitis by enhancing the secretion of IL-1ß and IL-18 in myeloid cells3-6. Here we show that the DNA-binding inflammasome receptor AIM27-10 has a T cell-intrinsic and inflammasome-independent role in the function of T regulatory (Treg) cells. AIM2 is highly expressed by both human and mouse Treg cells, is induced by TGFß, and its promoter is occupied by transcription factors that are associated with Treg cells such as RUNX1, ETS1, BCL11B and CREB. RNA sequencing, biochemical and metabolic analyses demonstrated that AIM2 attenuates AKT phosphorylation, mTOR and MYC signalling, and glycolysis, but promotes oxidative phosphorylation of lipids in Treg cells. Mechanistically, AIM2 interacts with the RACK1-PP2A phosphatase complex to restrain AKT phosphorylation. Lineage-tracing analysis demonstrates that AIM2 promotes the stability of Treg cells during inflammation. Although AIM2 is generally accepted as an inflammasome effector in myeloid cells, our results demonstrate a T cell-intrinsic role of AIM2 in restraining autoimmunity by reducing AKT-mTOR signalling and altering immune metabolism to enhance the stability of Treg cells.


Asunto(s)
Autoinmunidad/inmunología , Proteínas de Unión al ADN/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Proteínas Adaptadoras de Señalización CARD/deficiencia , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Glucólisis , Humanos , Inflamasomas , Inflamación/inmunología , Ratones , Fosforilación Oxidativa , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Cinasa C Activada/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta
6.
Environ Res ; 248: 118305, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307183

RESUMEN

Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 µg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid ß-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1ß, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid ß-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.


Asunto(s)
Microbioma Gastrointestinal , Ileítis , Ratones , Animales , Disbiosis , Pez Cebra/metabolismo , Ratones Endogámicos C57BL , Hígado , Ácidos Grasos/metabolismo
7.
J Hepatol ; 78(2): 271-280, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36152761

RESUMEN

BACKGROUND & AIMS: Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS: Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS: The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS: MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS: The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Animales , Ratones , Humanos , Virus de la Hepatitis A/genética , Péptido Hidrolasas , Ratones Endogámicos C57BL , Inmunidad Innata , Proteasas Virales
8.
Environ Sci Technol ; 57(9): 3746-3757, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36800558

RESUMEN

The neurotoxic effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on offspring animals are well-documented. However, epidemiological evidence for legacy PFAS is inconclusive, and for alternative PFAS, it is little known. In this investigation, we selected 718 mother-child pairs from the Chinese Maoming Birth Cohort Study and measured 17 legacy and alternative PFAS in the third-trimester serum. Neuropsychological developments (communication, gross motor function, fine motor function, problem solving ability, and personal-social skills) were assessed at 3, 6, 12, 18, 24, and 36 months using the Ages and Stages Questionnaires 3rd edition. Trajectories of each subscale were classified into persistently low and persistently high groups via group-based trajectory modeling. Logistic regression and grouped weighted quantile sum were fitted to assess the potential effects of individual PFAS and their mixtures, respectively. Higher linear PFHxS levels were associated with elevated odds for the persistently low trajectories of communication (OR = 1.73; 95% CI: 1.12, 2.66) and problem solving ability (OR = 2.11; 95% CI: 1.14, 3.90). Similar findings were observed for linear PFOS, 1m-PFOS, PFDA, PFDoDA, PFUnDA, and legacy PFAS mixture. However, no association was observed for alternative PFAS and their mixture. We provided insights into the longitudinal links between prenatal legacy/alternative PFAS exposure and neuropsychological development trajectories over the first 3 years of life.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Femenino , Contaminantes Ambientales/toxicidad , Estudios de Cohortes , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad
9.
Environ Sci Technol ; 57(31): 11420-11429, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494580

RESUMEN

Glucocorticoid plays a key role in the growth and organ maturation of fetus. However, the effect of glucocorticoid on the association between per- and polyfluoroalkyl substance (PFAS) exposure and fetal growth is still unknown. We detected cord cortisol (active glucocorticoid in human) and 34 PFAS concentrations in the maternal serum samples, which were collected from 202 mother-fetus pairs in the Maoming Birth Cohort from 2015 to 2018. The mediation effect of cord cortisol on the association between maternal PFAS and the neonatal growth index (NGI) was estimated. We found that higher PFAS concentrations were associated with lower NGI in terms of ponderal index, birth weight (BW), head circumference (HC), and its z-scores (BWZ and HCZ) (P < 0.05). Fetal cortisol could mediate 12.6-27.3% of the associations between PFAS and NGI. Specifically, cord cortisol mediated the association between branched perfluorooctane sulfonate (branched PFOS) and HCZ by 20.4% and between perfluorooctanoate (PFOA) and HCZ by 27.3%. Our findings provide the first epidemiological data evincing that fetal cortisol could mediate the association between prenatal PFAS exposure and fetal growth. Further investigations are recommended to elucidate the interactions among cord cortisol, PFAS, and fetal growth.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Embarazo , Recién Nacido , Femenino , Humanos , Estudios de Cohortes , Glucocorticoides , Hidrocortisona , Feto
10.
J Immunol ; 206(9): 2015-2028, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820855

RESUMEN

The cGAS-cyclic GMP-AMP (cGAMP)-stimulator of IFN genes (STING) pathway induces a powerful type I IFN (IFN-I) response and is a prime candidate for augmenting immunity in cancer immunotherapy and vaccines. IFN-I also has immune-regulatory functions manifested in several autoimmune diseases and is a first-line therapy for relapsing-remitting multiple sclerosis. However, it is only moderately effective and can induce adverse effects and neutralizing Abs in recipients. Targeting cGAMP in autoimmunity is unexplored and represents a challenge because of the intracellular location of its receptor, STING. We used microparticle (MP)-encapsulated cGAMP to increase cellular delivery, achieve dose sparing, and reduce potential toxicity. In the C57BL/6 experimental allergic encephalomyelitis (EAE) model, cGAMP encapsulated in MPs (cGAMP MPs) administered therapeutically protected mice from EAE in a STING-dependent fashion, whereas soluble cGAMP was ineffective. Protection was also observed in a relapsing-remitting model. Importantly, cGAMP MPs protected against EAE at the peak of disease and were more effective than rIFN-ß. Mechanistically, cGAMP MPs showed both IFN-I-dependent and -independent immunosuppressive effects. Furthermore, it induced the immunosuppressive cytokine IL-27 without requiring IFN-I. This augmented IL-10 expression through activated ERK and CREB. IL-27 and subsequent IL-10 were the most important cytokines to mitigate autoreactivity. Critically, cGAMP MPs promoted IFN-I as well as the immunoregulatory cytokines IL-27 and IL-10 in PBMCs from relapsing-remitting multiple sclerosis patients. Collectively, this study reveals a previously unappreciated immune-regulatory effect of cGAMP that can be harnessed to restrain T cell autoreactivity.


Asunto(s)
Micropartículas Derivadas de Células/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/inmunología , Transducción de Señal/inmunología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Humanos , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Nucleótidos Cíclicos/administración & dosificación , Nucleótidos Cíclicos/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Nature ; 551(7678): 105-109, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29072299

RESUMEN

T helper 17 (TH17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor ß (TGFß) is instrumental in TH17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFß enables TH17 cell differentiation remains elusive. Here we reveal that TGFß enables TH17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into TH17 cells in the absence of TGFß signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and TH17 cell differentiation of SMAD4-deficient T cells. However, TGFß neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFß stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and TH17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and TH17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFß-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable TH17 cell differentiation. This study reveals a critical mechanism by which TGFß controls TH17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating TH17-related diseases.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Proteína Smad4/metabolismo , Células Th17/citología , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/genética , Femenino , Eliminación de Gen , Humanos , Interleucina-6/metabolismo , Masculino , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad4/deficiencia , Proteína Smad4/genética
12.
Toxicol Appl Pharmacol ; 436: 115880, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016909

RESUMEN

Intestinal injury assessment of hexavalent chromium (Cr-VI) in humans is crucial for quantifying assessment of adverse health risk posed by the intake of Cr (VI)-contaminated water. To overcome the deficiency in simulating human gastric reduction and intestinal absorption, we modified the constituents of simulated gastric fluid in in vitro digestion method by adding reductants glutathione (18 µM) and ascorbic acid (180 µM), which incorporated with human intestinal epithelial model to construct an in vitro gastrointestinal digestion (IVGD) model for intestinal injury assessment. Cr-VI bioaccessibility results from IVGD model showed that weak gastric acidity significantly increased the intestinal accessible Cr-VI dose by 22.41-38.43 folds. The time-course intestinal absorption indicated prolongation of intestinal exposure destroyed the intestinal epithelium, and 24 h after Cr-VI treatment was a good time point to perform intestinal absorption and toxicity assessment. A series of cell-based bioassays provided initial warning of adverse effect, suggesting that epithelial integrity exhibited greatest sensitivity to Cr-VI exposure and might be used as a sensitive marker for the toxicity assessment of oral exposure to Cr-VI. Notably, this study provides a feasible strategy for delineation of Cr-VI biotransformation and intestinal injury following ingestion exposure, which contributes to address the toxicity data gap of low-dose exposure in humans and puts forward a reference for intestinal toxicity assessment of other chemicals.


Asunto(s)
Cromo/efectos adversos , Digestión/efectos de los fármacos , Enfermedades Intestinales/inducido químicamente , Intestinos/efectos de los fármacos , Biotransformación/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Células HT29 , Humanos , Contaminantes Químicos del Agua/efectos adversos
13.
Mol Pharm ; 19(9): 3125-3138, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35913984

RESUMEN

Natural killer (NK) cells are an important member of the innate immune system and can participate in direct tumor cell killing in response to immunotherapies. One class of immunotherapy is stimulator of interferon gene (STING) agonists, which result in a robust type I interferon (IFN-I) response. Most mechanistic studies involving STING have focused on macrophages and T cells. Nevertheless, NK cells are also activated by IFN-I, but the effect of STING activation on NK cells remains to be adequately investigated. We show that both direct treatment with soluble STING agonist cyclic di-guanosine monophosphate-adenosine monophosphate (cGAMP) and indirect treatment with cGAMP encapsulated in microparticles (MPs) result in NK cell activation in vitro, although the former requires 100× more cGAMP than the latter. Additionally, direct activation with cGAMP leads to NK cell death. Indirect activation with cGAMP MPs does not result in NK cell death but rather cell activation and cell killing in vitro. In vivo, treatment with soluble cGAMP and cGAMP MPs both cause short-term activation, whereas only cGAMP MP treatment produces long-term changes in NK cell activation markers. Thus, this work indicates that treatment with an encapsulated STING agonist activates NK cells more efficiently than that with soluble cGAMP. In both the in vitro and in vivo systems, the MP delivery system results in more robust effects at a greatly reduced dosage. These results have potential applications in aiding the improvement of cancer immunotherapies.


Asunto(s)
Células Asesinas Naturales , Proteínas de la Membrana , Animales , Células Presentadoras de Antígenos/metabolismo , Inmunoterapia , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL
14.
Environ Sci Technol ; 56(6): 3623-3633, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35194992

RESUMEN

Toxicogenomics and physiologically based pharmacokinetic (PBPK) models are useful approaches in chemical risk assessment, but the methodology to incorporate toxicogenomic data into a PBPK model to inform risk assessment remains to be developed. This study aimed to develop a probabilistic human health risk assessment approach by integrating toxicogenomic dose-response data and PBPK modeling using perfluorooctane sulfonate (PFOS) as a case study. Based on the available human in vitro and mouse in vivo toxicogenomic data, we identified the differentially expressed genes (DEGs) at each exposure paradigm/duration. Kyoto Encyclopedia of Genes and Genomes and disease ontology enrichment analyses were conducted on the DEGs to identify significantly enriched pathways and diseases. The dose-response data of DEGs were analyzed using the Bayesian benchmark dose (BMD) method. Using a previously published PBPK model, the gene BMDs were converted to human equivalent doses (HEDs), which were summarized to pathway and disease HEDs and then extrapolated to reference doses (RfDs) by considering an uncertainty factor of 30 for mouse in vivo data and 10 for human in vitro data. The results suggested that the median RfDs at different exposure paradigms were similar to the 2016 U.S. Environmental Protection Agency's recommended RfD, while the RfDs for the most sensitive pathways and diseases were closer to the recent European Food Safety Authority's guidance values. In conclusion, genomic dose-response data and PBPK modeling can be integrated to become a useful alternative approach in risk assessment of environmental chemicals. This approach considers multiple endpoints, provides toxicity mechanistic insights, and does not rely on apical toxicity endpoints.


Asunto(s)
Ácidos Alcanesulfónicos , Toxicogenética , Ácidos Alcanesulfónicos/toxicidad , Animales , Teorema de Bayes , Fluorocarburos , Humanos , Ratones , Modelos Biológicos , Medición de Riesgo
16.
Environ Health ; 21(1): 61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778735

RESUMEN

Phthalates are a group of industrial chemicals widely used in everyday products including cosmetics, food packaging and containers, plastics, and building materials. Previous studies have indicated that urinary phthalate metabolites are associated with metabolic effects including those on lipid metabolism, but the results are mixed. Furthermore, whether thyroid function mediates the association between phthalate exposure and lipid metabolism remains unclear. In the present study, we explored whether changes in thyroid function markers mediate the associations between phthalate exposure and lipid metabolism indicators in Taiwanese adults. The cross-sectional data were obtained from the Taiwan Environmental Survey for Toxicants conducted in 2013. Levels of 11 urinary phthalate metabolites, levels of 5 thyroid hormones, and 8 indicators of lipid metabolism were assessed in 222 Taiwanese adults. The relationships of urinary phthalate metabolite levels with serum thyroid hormone levels and lipid metabolism indicators were explored using multiple regression models. Mediation analysis was conducted to evaluate the role of thyroid function in the association between phthalate exposure and lipid metabolism. The metabolite of di(- 2-ethylhexyl) phthalate (∑DEHPm) exhibited a significant positive association with the lipid metabolite indicator of high-density lipoprotein cholesterol (HDL-C; ß = 0.059, 95% confidence interval [CI] = 0.009, 0.109) in adults, and the thyroid function indicator thyroxine (T4) had a significant negative association with the metabolite ∑DEHPm (ß = - 0.059, 95% CI = - 0.101, - 0.016) and a significant negative association with HDL-C (ß = - 0.284, 95% CI = - 0.440, - 0.128). The T4 indirect effect was 0.015 (95% CI = - 0.0087, 0.05), and the mediation effect was 32.2%. Our results support the assumption that exposure to phthalates influences the homeostasis of lipid metabolism by interfering with thyroid function.


Asunto(s)
Metabolismo de los Lípidos , Ácidos Ftálicos , Adulto , Estudios Transversales , Humanos , Glándula Tiroides
17.
Part Fibre Toxicol ; 19(1): 47, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804418

RESUMEN

BACKGROUND: Physiologically based pharmacokinetic (PBPK) modeling is an important tool in predicting target organ dosimetry and risk assessment of nanoparticles (NPs). The methodology of building a multi-route PBPK model for NPs has not been established, nor systematically evaluated. In this study, we hypothesized that the traditional route-to-route extrapolation approach of PBPK modeling that is typically used for small molecules may not be appropriate for NPs. To test this hypothesis, the objective of this study was to develop a multi-route PBPK model for different sizes (1.4-200 nm) of gold nanoparticles (AuNPs) in adult rats following different routes of administration (i.e., intravenous (IV), oral gavage, intratracheal instillation, and endotracheal inhalation) using two approaches: a traditional route-to-route extrapolation approach for small molecules and a new approach that is based on route-specific data that we propose to be applied generally to NPs. RESULTS: We found that the PBPK model using this new approach had superior performance than the traditional approach. The final PBPK model was optimized rigorously using a Bayesian hierarchical approach with Markov chain Monte Carlo simulations, and then converted to a web-based interface using R Shiny. In addition, quantitative structure-activity relationships (QSAR) based multivariate linear regressions were established to predict the route-specific key biodistribution parameters (e.g., maximum uptake rate) based on the physicochemical properties of AuNPs (e.g., size, surface area, dose, Zeta potential, and NP numbers). These results showed the size and surface area of AuNPs were the main determinants for endocytic/phagocytic uptake rates regardless of the route of administration, while Zeta potential was an important parameter for the estimation of the exocytic release rates following IV administration. CONCLUSIONS: This study suggests that traditional route-to-route extrapolation approaches for PBPK modeling of small molecules are not applicable to NPs. Therefore, multi-route PBPK models for NPs should be developed using route-specific data. This novel PBPK-based web interface serves as a foundation for extrapolating to other NPs and to humans to facilitate biodistribution estimation, safety, and risk assessment of NPs.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Teorema de Bayes , Modelos Biológicos , Ratas , Distribución Tisular
18.
Ecotoxicol Environ Saf ; 237: 113503, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35453019

RESUMEN

Paraquat (PQ) is a ubiquitously applied herbicide. Long-term PQ exposure with low dose has been reported to induce abnormal expression of long non-coding RNAs (lncRNAs) in brain nerve cells, which could further lead to Parkinson's disease (PD). N6-methyladenosine (m6A) modification has recently been identified as having an important role in regulating the function of lncRNAs. However, how m6A modification regulates lncRNAs following PQ exposure remains largely unknown. Herein, this study reported m6A modification of lncRNAs in mouse neuroblastoma cells (Neuro-2a) following PQ induced reactive oxide species (ROS). M6A sequencing was performed to explore the m6A modificated pattern of lncRNAs in Neuro-2a cells which were treated with 200 µM PQ for 3 h. It was found that PQ hypermethylated total RNA and changed the expression of m6A methyltransferase and demethylase proteins, which leading to the alteration of m6A modification of lncRNAs. Furthermore, the functional analysis further revealed that N-acetyl-L-cysteine (NAC),a ROS scavengers, partly reversed PQ-induced distinct m6A modificated pattern of lncRNAs. In addition, tow specific m6A modified lncRNAs were identified: cell division cycle 5-like (lncRNA CDC5L) and signal transducer and activator of transcription 3 (lncRNA STAT3), which could influence downstream autophagy related biological function. In summary, this work could potentially contribute to the new insight of lncRNAs m6A modification mechanism in the field of environmental toxicology.


Asunto(s)
Paraquat , ARN Largo no Codificante , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Ratones , Estrés Oxidativo/genética , Paraquat/toxicidad , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816951

RESUMEN

In renal cell carcinoma (RCC), interleukin (IL)-1ß may be a pro-metastatic cytokine. However, we have not yet noted the clinical association between tumoral expression or serum level of IL-1ß and RCC in our patient cohort. Herein, we investigate molecular mechanisms elicited by IL-1ß in RCC. We found that IL-1ß stimulates substantial monocyte chemoattractant protein (MCP)-1 production in RCC cells by activating NF-kB and AP-1. In our xenograft RCC model, intra-tumoral MCP-1 injection down-regulated Ki67 expression and reduced tumor size. Microarray analysis revealed that MCP-1 treatment altered protein-folding processes in RCC cells. MCP-1-treated RCC cells and xenograft tumors expressed MCP-1-induced protein (MCPIP) and molecules involved in endoplasmic reticulum (ER) stress-mediated apoptosis, namely C/EBP Homologous Protein (CHOP), protein kinase-like ER kinase (PERK), and calnexin (CNX). ER stress-mediated apoptosis in MCP-1-treated RCC cells was confirmed using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Moreover, ectopic MCPIP expression increased PERK expression in Human embryonic kidney (HEK)293 cells. Our meta-analysis revealed that low MCP-1 levels reduce 1-year post-nephrectomy survival in patients with RCC. Immunohistochemistry indicated that in some RCC biopsy samples, the correlation between MCP-1 or MCPIP expression and tumor stages was inverse. Thus, MCP-1 and MCPIP potentially reduce the IL-1ß-mediated oncogenic effect in RCC; our findings suggest that ER stress is a potential RCC treatment target.


Asunto(s)
Apoptosis , Carcinoma de Células Renales/metabolismo , Quimiocina CCL2/metabolismo , Estrés del Retículo Endoplásmico , Interleucina-1beta/metabolismo , Neoplasias Renales/metabolismo , Ribonucleasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Carcinoma de Células Renales/sangre , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Quimiocina CCL2/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-1beta/sangre , Neoplasias Renales/sangre , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Proteínas de Neoplasias/metabolismo , Pronóstico , Pliegue de Proteína , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Environ Sci Technol ; 51(24): 14262-14272, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29192765

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed throughout the atmosphere as mixtures attached to ambient particulate matter (PM). PAHs usually elicit similar toxicological pathways but do so with varying levels of efficacy. In this study, we utilized high-throughput screening (HTS) in vitro data of PAHs to predict health risks associated with coarse and fine PM. PM samples with 22 PAH compounds obtained from residential areas close to industrial parks in central Taiwan were analyzed. On the basis of the PM-bound PAH concentrations and their activities reported in HTS assays, we developed a probabilistic model for estimating cumulative exposure of humans to PAHs. Activity-to-exposure ratio (AER) values were calculated to compare relative risks of activating the aryl hydrocarbon receptor (AhR), nuclear factor erythroid 2-related factor 2 (Nrf2), and tumor suppressor gene (p53) when children or adults were exposed to fine or coarse PM in different seasons. On the basis of AER values, the risk of fine PM exposure was relatively higher than the risk of exposure to coarse PM in pathway activation. Children as a susceptible population had a risk of the activating AhR pathway greater than that of adults. Particularly higher risks were observed in winter than in summer. Among three pathways, AhR was the most sensitive one activated by exposure to PAHs. In addition, the activation of the AhR, Nrf2, and p53 pathways was compared by in vitro reporter assays with and without the pre-extraction of PAHs from PM. Our proposed novel approach accounts for mixture toxicities in characterizing in vitro pathway-based risks via inhalation exposure to ambient PAHs.


Asunto(s)
Material Particulado , Hidrocarburos Policíclicos Aromáticos , Medición de Riesgo , Contaminantes Atmosféricos , Humanos , Estaciones del Año , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA