Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773003

RESUMEN

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Brasil , Ríos/química , Biomarcadores/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/metabolismo , Metales/análisis , Characidae , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peces/metabolismo
2.
Microb Ecol ; 86(1): 297-310, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35610383

RESUMEN

Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.


Asunto(s)
Archaea , Sedimentos Geológicos , Archaea/genética , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Calidad del Agua
3.
Environ Monit Assess ; 194(7): 497, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35695983

RESUMEN

Chronic exposure to multiple pollutants affects aquatic organisms, even at low concentrations, and can impair fishery activities along marine coastlines. The bioavailability of toxic metals and the presence of metals and polycyclic aromatic hydrocarbons (PAHs) in both water and sediment can explain the worst-case scenario of fish health and fishery production decline along the Algeria coastline. The hepatosomatic index (HIS), gonadosomatic index (GSI), and condition factor (K) in the studied species from the Algiers, Bou Ismail, and Zemmouri bays are the first indicators of the poor environmental health along the studied region. These findings could be explained by the bioavailability of Zn, Cu, Cr, Mn, Hg, and Ni and the detection of PAHs in the water and sediment of these bays. Additionally, histopathological damage in the liver is described in sardine (Sardina pilchardus), anchovy (Engraulis encrasicolus), and sardinelle (Sardinella aurita) highlights the current study in the investigation of the risk of exposure to biota or human populations. The occurrence of permanent lesions in the livers of fish impairs organ function and increases the incidence of diseases affecting the fish community. Furthermore, the factor analysis with principal component analysis (FA/PCA) dataset explains the physiological disturbances described in all studied species. These findings revealed that Zemmouri bay is the most affected by chemicals, suggesting that S. pilchardus is the most sensitive species. Finally, the results showed that the bioavailability of chemicals present in the studied bays confirms poor water quality, which can explain the decrease in fishery production along the Algerian Coastline.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Argelia , Animales , Bahías , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Peces , Mar Mediterráneo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Bull Environ Contam Toxicol ; 107(1): 62-68, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33638674

RESUMEN

The major fire at the fuel storage tanks of a Chemical Terminal in April 2015 at the Port of Santos (SP), SE Brazil, potentially caused significant environmental impacts to the Santos Estuarine System (SES). The aim of the study was to identify the classes of substances causing pore water toxicity in the SES sediments in the vicinity of the port terminal before and after the incident using the TIE approach. Our results suggest that nonpolar compounds (e.g. PAHs, BTX, oil and grease) from the storage tanks that burned, and surfactants present in the formulation of foam fire extinguishing agents were the responsible for the sediment toxicity observed in the vicinity of the incident site. The contribution of metals to the toxicity related to the incident was ruled out. A long-term monitoring of the environmental effects of the incident is recommended since substances for which evidence of toxicity was found are toxic, persistent and can accumulate in the biota.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Arch Environ Contam Toxicol ; 79(1): 101-110, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32279094

RESUMEN

Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.


Asunto(s)
Crassostrea/efectos de los fármacos , Biomarcadores Ambientales/efectos de los fármacos , Microplásticos/toxicidad , Triclosán/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Crassostrea/genética , Crassostrea/metabolismo , Daño del ADN , Branquias/efectos de los fármacos , Branquias/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microplásticos/metabolismo , Modelos Teóricos , Triclosán/metabolismo , Contaminantes Químicos del Agua/metabolismo
6.
Ecotoxicol Environ Saf ; 147: 945-953, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29029380

RESUMEN

The usual approaches used in ecological risk assessment have been based on individual and population level standard procedures. Although these have been important tools to assess adverse effects on ecosystems, they are generally simplified and therefore lack ecological realism. Microcosm studies using meiobenthic communities offer a good compromise between the complexity of the ecosystem and the often highly artificial settings of laboratory experiments. An experiment was designed to investigate the potential of the microcosm approach using meiofauna as a tool for ecotoxicological studies. The experiment tested the ecological effects of exposure to sewage-impacted pore water simultaneously at the community level using meiofauna microcosms and at the individual level using laboratory fecundity tests with the copepod Nitokra sp. Specifically, the experiment tested the toxicity of pore water from three sites according to a contamination gradient. Both approaches were efficient in detecting differences in toxicity between the less and more contaminated sites. However, only multivariate data from community analysis detected differences in the gradient of contamination. In addition to information about toxicity, the community level microcosm experiment gave indications about sensitive and tolerant species, indirect ecological effects, as well as raised hypothesis about contamination routes and bioavailability to be tested. Considering the importance of meiofauna for benthic ecosystems, the microcosm approach using natural meiobenthic communities might be a valuable addition as a higher tier approach in ecological risk assessment, providing highly relevant ecological information on the toxicity of contaminated sediments.


Asunto(s)
Copépodos/efectos de los fármacos , Ecotoxicología/métodos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/microbiología , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Ecología , Ecosistema , Sedimentos Geológicos/análisis , Medición de Riesgo
7.
Sci Total Environ ; 912: 168790, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38000735

RESUMEN

Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO2-driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO2-driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.


Asunto(s)
Mercurio , Nematodos , Animales , Ecosistema , Dióxido de Carbono/toxicidad , Mercurio/farmacología , Biota
8.
Sci Total Environ ; 914: 169742, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163587

RESUMEN

Marine Protected Areas (MPAs) are designed to conserve biodiversity and vulnerable ecosystems. This study aimed to assess the environmental quality of three Brazilian MPAs, based on the integrated analysis of biomarkers in pufferfish. The MPAs are differentiated by the degree of anthropogenic influences. The Barra do Una Estuary sustainable reserve (JUR) is a reference area due to its low levels of contamination and species diversity. The Cananéia Estuarine System (CAN) has been recognized as a biosphere reserve by UNESCO, as well as a Ramsar wetland. This MPA was influenced by upstream mining activities, resulting in the introduction of metals in the estuarine waters and the discharge of untreated urban sewage. The São Vicente estuary (SSV) lacks proper sanitation infrastructure. All collections were conducted during winter season, and, after collection, the animals were euthanized, their soft tissues were removed, and multiple biomarkers were analyzed in the gills and liver, as biometric, genotoxic, biochemical, and morphological. A one-factor multivariate analysis was applied to evaluate the differences between the data sets, and the matrices were analyzed using PERMANOVA to evaluate the "estuary" factor. The results were integrated using PCA with a 0.4 cut value and an Enhanced Integrated Biomarker Response (EIBR) was calculated. PCA was correlated with biochemical, genotoxic, and morphological biomarkers. In general, SVV differed from CAN and JUR as shown by both univariate and multivariate analyses. SVV also showed the highest EIBR, followed by CAN. Organisms from SSV showed greater gill pathology, elevated AChE activity and lipoperoxidation (LPO), and micronuclei frequency. CAN present intermediate EIBR, with severe pathologies in the liver. CAN seems to present an intermediate environmental quality between SSV and JUR indicating the importance of the existence of MPAs for environmental conservation and the need to monitor such areas, to maintain their suitable environmental quality.


Asunto(s)
Ecosistema , Tetraodontiformes , Animales , Brasil , Biomarcadores , Salud Ambiental , Monitoreo del Ambiente/métodos
9.
Chemosphere ; 349: 140812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036225

RESUMEN

Bioaccumulation studies in fish mark the initial phase of assessing the risk of chemical exposure to biota and human populations. The Iguaçu River boasting a diverse endemic ichthyofauna, is grappling with the repercussions of human activities. This study delved into the bioaccumulation of micropollutants, the early-warning effects on Rhamdia quelen and Oreochomis niloticus in the Segredo Reservoir (HRS) and the potential risk of human exposure. Two groups of caged fish in three sites of the reservoir were exposed during the autumn-winter and spring-summer, while a third group (O. niloticus) underwent a twelve-month exposure, and inorganic and organic chemicals analysis in water, sediment, and biota. Additionally, metallothionein expression and genotoxicity were employed as biomarkers. PAHs, PCBs, Al, Cu, Fe, and As in water and DDTs, Cu, Zn, and As in sediment surpassed the thresholds set by Brazilian regulations, where DDT exhibited bioaccumulation in muscle, alongside metals in liver, kidney, gills, and muscle tissues. R. quelen showed metallothionein expression whereas DNA damage and NMA frequencies were elevated in target organs and in brain and erythrocytes of O. niloticus during summer. In this species the DNA damage in liver was remarkable after twelve months. Target Hazard Quotients and Cancer Risk values shedding light on the vulnerability of both children and adults. The reservoir's conditions led to heightened sensitivity to micropollutants for R. quelen species. The data presented herein provides decision-makers with pertinent insights to facilitate effective management and conservation initiatives within the Iguaçu Basin.


Asunto(s)
Bagres , Contaminantes Ambientales , Animales , Niño , Humanos , Ríos , Brasil , Monitoreo del Ambiente , Bioacumulación , Agua , Metalotioneína
10.
Mar Pollut Bull ; 200: 116063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278019

RESUMEN

The most extensive oil spill ever recorded in tropical oceans occurred between August 2019 and March 2020, affecting approximately 3000 km of the Brazilian coast. This study assessed the chemical contamination and toxicity of sediments collected from affected reef areas during two sampling surveys conducted 17 and 24 months after the peak of oil slick inputs. Our results indicated that neither PAH levels nor measured toxicity showed a significant contribution from the spilled oil, with concentrations and biological effects indistinguishable from those in unaffected areas. Similarly, no differences were observed between seasons. Furthermore, there was no discernible relationship between sediment toxicity results and the measured PAH concentrations. Therefore, while biological responses indicated toxicity in most assessed areas, these responses are likely related to other local sources. This evidence suggests a natural oil attenuation process contributing to local environmental recovery. Nonetheless, further investigation is needed for other areas affected by oil spills.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Brasil , Petróleo/toxicidad , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
11.
Toxics ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787099

RESUMEN

The synthetic hormone 17α ethinyl estradiol (EE2) is a molecule widely used in female contraceptives and recognized as a contaminant of attention (Watch List) in the European Union due to its high consumption, endocrine effects and occurrence in aquatic environments. Its main source of introduction is domestic sewage where it can be associated with other contaminants such as microplastics (MPs). Due to their characteristics, they can combine with each other and exacerbate their isolated effects on biota. This study evaluated the combined effects of microplastics (MPs) and 17α ethinylestradiol (EE2) on two tropical estuarine invertebrate species: Crassostrea gasar and Ucides cordatus. Polyethylene particles were spiked with EE2 and organisms were exposed to three treatments, categorized into three groups: control group (C), virgin microplastics (MPs), and spiked microplastics with EE2 (MPEs). All treatments were evaluated after 3 and 7 days of exposure. Oysters exhibited changes in phase 2 enzymes and the antioxidant system, oxidative stress in the gills, and reduced lysosomal membrane stability after exposure to MPs and MPEs. Crabs exposed to MPs and MPEs after seven days showed changes in phase 1 enzymes in the gills and changes in phases 1 and 2 enzymes in the hepatopancreas, such as disturbed cellular health. The combined effects of microplastics and EE2 increased the toxicity experienced by organisms, which may trigger effects at higher levels of biological organization, leading to ecological disturbances in tropical coastal ecosystems.

12.
Sci Total Environ ; 885: 163687, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37137370

RESUMEN

Interactive effects of trace metal contamination, ocean warming, and CO2-driven acidification on the structure of a meiofaunal benthic community was assessed. Meiofauna microcosm bioassays were carried out in controlled conditions in a full factorial experimental design which included three fixed factors: metal contamination in the sediment (3 levels of a mixture of Cu, Pb, Zn, and Hg), temperature (26 and 28 °C) and pH (7.6 and 8.1). Metal contamination caused a sharp decrease in the densities of the most abundant meiobenthic groups and interacted with temperature rise, exacerbating deleterious effects for Nematoda and Copepoda, but mitigating effects for Acoelomorpha. CO2-driven acidification resulted in increased acoelomorphs density, but only in sediments with lower levels of metals. Copepod densities, in turn, were lower in the CO2-driven acidification scenario regardless of contamination or temperature. The results obtained in the present study showed that temperature rise and CO2-driven acidification of coastal ocean waters, at environmentally relevant levels, interacts with trace metals in marine sediments, differently affecting the major groups of benthic biota.


Asunto(s)
Nematodos , Oligoelementos , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Metales/toxicidad , Océanos y Mares , Sedimentos Geológicos/química
13.
Sci Total Environ ; 872: 162215, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36791867

RESUMEN

Chlorothalonil is an organochlorine compound that has long been used in agriculture. In recent years, this compound has been used as an antifouling booster biocide and its presence has been reported in marine coastal environments, especially in navigational areas. Although sediment can be a sink for chlorothalonil due to high affinity to fine particulate matter, toxicity studies with non-target marine and/or estuarine organisms is focused on waterborne exposure only. This study aimed to determine sediment-borne ecotoxicological effects of chlorothalonil on different benthic organisms of the Latin American biota using a integrative multilevel approach. Marine/estuarine organisms were exposed to sediments spiked with chlorothalonil (from 0 to 10.0 µg g-1) and effects at sub-individual (biochemical biomarkers in Anomalocardia flexuosa), individual (lethal effects to Tiburonella viscana and Artemia salina) and subpopulation levels (Nitokra sp. reproduction) were assessed. Increasing chlorothalonil concentrations in sediment caused increasing ecotoxicological effects in different levels of biological organisation, from biochemical to subpopulation levels. The highest exposure concentrations showed increased biomarkers of effects (lipid peroxidation and DNA damage in gills and/or digestive gland of A. flexuosa), lower fecundity and lower survival of the test organisms. GPx activity associated with LPO levels in the digestive gland suggested a response to the oxidant challenge provided by the biocide. At the lowest concentration (0.001 µg g-1), chlorothalonil detoxification mechanisms and defense against its oxidising action, involving GSH and glutathione-dependent enzymes (GST and GPx) were induced. At intermediate concentrations, there was a tendency of decreasing GSH levels, probably due to conjugation with chlorothalonil, which also affected the activities of the glutathione-dependent enzymes. At the highest tested concentration (10.0 µg g-1), chlorothalonil may have restimulated GSH synthesis in the gills of A. flexuosa, although the prooxidant activity has induced effects. This study contributes to assessing the environmental risk of chlorothalonil in sediment for non-target marine and estuarine organisms.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Animales , América Latina , Glutatión , Organismos Acuáticos , Biomarcadores , Reproducción , Contaminantes Químicos del Agua/toxicidad
14.
Mar Pollut Bull ; 193: 115170, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37329735

RESUMEN

This study aimed to evaluate B[a]P and low-density polyethylene microplastics (MPs) toxicty, alone and in mixture (0.03 to 30 µg L-1 of B[a]P; and 5, 50 and 500 mg L-1 for MPs). Five mg L-1 of MPs is considerably higher than commonly reported environmental concentrations, although it has been reported for marine environments. Individual (sea urchin embryo-larval development and mortality of mysids) and sub-individual responses (LPO and DNA damage in mysids) were assessed. The toxicity increased as the B[a]P concentration increased, and microplastics alone did not cause toxicity. B[a]P toxicity was not modified by the lowest concentration of MPs (5 mg L-1), but at higher MPs concentrations (50 and 500 mg L-1), the effects of B[a]P on sea urchin development and in biomarkers in mysids were diminished. Microplastics interacted with B[a]P in seawater, reducing its toxicity, probably due to adsorption of B[a]P to the surface of microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Benzo(a)pireno/toxicidad , Organismos Acuáticos , Invertebrados , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
15.
J Environ Monit ; 14(10): 2608-15, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22972440

RESUMEN

A battery of biomarkers of exposure (EROD, DBF, GST and GPx) and effect (lipid peroxidation and DNA damage - strand breaks) were analyzed in gill tissues from caged and native oysters Crassostrea rhizophorae exposed to two tropical estuarine systems in SW Brazil: Santos (S1, S2, S3, S4) and Paranaguá (P1 - control, P2, P3, P4). The exposure lasted 28 days. Native oysters were sampled in the same areas where caged systems were exposed. Significant induction of biomarkers of exposure to organic compounds and oxidative stress (p < 0.05) were observed in all transplanted individuals from Santos resulting in DNA damage and lipid peroxidation. Biological adverse effects were more evident in oysters transplanted in the Santos Estuarine System, a recognized contaminated area, than in the Paranaguá Estuarine System, surrounded by urban areas and Environmental Protected Areas. Native specimens from both estuaries showed adaption to the impacts of several contamination sources affecting the ecosystem. The use of transplanted C. rhizophorae proved to be a suitable tool for assessing and monitoring the environmental quality in mangrove ecosystems. This integrated approach employing multi-biomarker responses under field conditions could be incorporated as a descriptor of health status in tropical estuarine systems.


Asunto(s)
Monitoreo del Ambiente/métodos , Estuarios , Animales , Biomarcadores/metabolismo , Brasil , Crassostrea/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Ecosistema , Fluoresceínas/metabolismo , Branquias/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
16.
Sci Total Environ ; 815: 152944, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007601

RESUMEN

Natural pH values in coastal waters vary largely among locations, ecosystems, and time periods; still, there is an ongoing acidification trend. In this scenario, more acidic pH values can alter bioavailability of organic contaminants, to organisms. Despite this, interactive effects between pH and chemical substances are not usually considered in Ecological Risk Assessment protocols. This study investigated the effects of pH on the toxicity of a hydrophobic organic compound on a benthic community using a microcosm experiment setup to assess the response of nematode assemblages exposed to environmentally relevant concentrations of Irgarol at two natural pH conditions. Estuarine nematode assemblages were exposed to two concentrations of Irgarol at pH 7.0 and 8.0 for periods of 7 and 35 days. Lower diversity of nematode genera was observed at the highest tested Irgarol concentration (1281 ± 65 ng.g-1). The results showed that the effects of Irgarol contamination were independent of pH variation, indicating no influence of acidification within this range on the toxicity of Irgarol to benthic meiofauna. However, the results showed that estuarine nematode assemblages are impacted by long-term exposure to low (but naturally occurring) pHs. This indicates that estuarine organisms may be under naturally high physiological pressure and that permanent changes in the ecosystem's environmental factors, such as future coastal ocean acidification, may drive organisms closer to the edges of their tolerance windows.


Asunto(s)
Nematodos , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Agua de Mar , Triazinas/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Environ Sci Pollut Res Int ; 29(7): 10122-10137, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34510342

RESUMEN

Estuaries in the world are affected by different contamination sources related to urbanisation and port/industrial activities. Identifying the substances responsible for the environmental toxicity in estuaries is challenging due to the multitude of stressors, both natural and anthropogenic. The Toxicity Identification and Evaluation (TIE) is a suitable way of determining causes of toxicity of sediments, but it poses difficulties since its application is labour intensive and time consuming. The aim of this study is to evaluate the diagnosis provided by a TIE based on microscale embryotoxicity tests with interstitial water (IW) to identify toxicants in estuarine sediments affected by multiple stressors. TIE showed toxicity due to different combinations of metals, apolar organic compounds, ammonia and sulphides, depending on the contamination source closest to the sampling station. The microscale TIE was able to discern different toxicants on sites subject to different contamination sources. There is good agreement between the results indicated in the TIE and the chemical analyses in whole sediment, although there are some disagreements, either due to the sensitivity of the test used, or due to the particularities of the use of interstitial water to assess the sediment toxicity. The improvement of TIE methods focused on identifying toxicants in multiple-stressed estuarine areas are crucial to discern contamination sources and subsidise management strategies.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Metales/análisis , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Mar Pollut Bull ; 181: 113828, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716493

RESUMEN

Although the simplification of multivariate histopathological data into univariate indices can be useful for the assessment of environmental quality, this implies a great loss of information. The objective of the present study was to evaluate the effectiveness, in the context of environmental quality assessment, of an approach that integrates individual histopathological responses in a discriminated manner with the results of contaminants by means of multivariate analyses. This analysis was compared to the diagnosis of environmental quality provided by the use of the univariate Bernet histopathological index. Contaminant loads (sediments and fish) and the liver histopathology of Cathorops spixii were integrated through multivariate analysis. Integrated individual histopathological responses allowed classifying environmental quality from more to less impacted sites, while the univariate index showed some inconsistencies with chemical loads and allowed identifying only the most impacted site.


Asunto(s)
Bagres , Contaminantes Químicos del Agua , Animales , Biomarcadores , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Hígado/química , Contaminantes Químicos del Agua/análisis
19.
Mar Pollut Bull ; 178: 113590, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367694

RESUMEN

The gastrointestinal tract and its enteric nervous system are the first routes of food and xenobiotics uptake. Considering the importance of this organ, this study evaluated intestinal biomarkers of Sphoeroides testudineus integrating the data to generate tools for pollution assessment. The fish were collected in three sites of São Paulo Coast and their intestines were analyzed for biochemical, histology, and neuronal density and morphometry biomarkers. To evaluate the differences among the data, a PERMANOVA was applied, followed by a FA/PCA. The PERMANOVA indicated differences (P < 0.001) between the regions (RA, A1, and A2). Four factors were extracted from the FA/PCA (62% cumulative), showing that the animals from A2 presented severe alterations, mainly in intestinal morphometry and neuronal density. A1 alterations refer mainly to the increase of neuronal metabolism. Our results also evidence a gradient of environmental quality related to the protection level (AR > A1 > A2).


Asunto(s)
Contaminación Ambiental , Tetraodontiformes , Animales , Biomarcadores/metabolismo , Brasil , Intestinos/química , Tetraodontiformes/metabolismo
20.
Mar Pollut Bull ; 177: 113469, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35248887

RESUMEN

Methods to assess the effects of contaminants on marine organisms typically involve euthanasia to obtain samples, but less invasive techniques may be more appropriate for working with threatened species. In this study, were assessed the biological responses of crabs exposed to microplastics and contaminants of emerging concern. Biochemical and cellular effects (lipid peroxidation, DNA damage, cholinesterase activity, and lysosomal membrane stability) in hemolymph were analyzed in a kinetic study, at 3 and 7 days, in U. cordatus exposed to microplastics spiked with Triclosan (TCS) or 17α-Ethynylestradiol (EE2). The results showed that the contaminants were produced toxic effects in the crabs exposed either to the microplastics alone (oxidative stress, genotoxicity, and neurotoxicity), or to microplastics with TCS or EE2 adsorbed (neurotoxic and cytotoxic). The present study showed the responsiveness of non-lethal analyzes to understanding the biological effects of combined exposure to microplastics and chemical pollution.


Asunto(s)
Cosméticos , Contaminantes Químicos del Agua , Animales , Biomarcadores , Cosméticos/toxicidad , Microplásticos/toxicidad , Preparaciones Farmacéuticas , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA