Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35621960

RESUMEN

Chronic exposure to ultraviolet (UV) light promotes the breakdown of collagen in the skin and disrupts the extracellular matrix (ECM) structure, leading to skin wrinkling. Pacific whiting (Merluccius productus) is a fish abundant on the Pacific coast. In the current study, we investigated the anti-wrinkle effect of hydrolysate from Pacific whiting skin gelatin (PWG) in UVB-irradiated human dermal fibroblasts and the molecular mechanisms involved. PWG effectively restored type 1 procollagen synthesis reduced by UVB-irradiation. Also, we found that PWG inhibited collagen degradation by inhibiting MMP1 expression. Furthermore, PWG decreased cytokines TNF-α, IL-6, and IL-1ß associated with inflammatory responses and increased antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH content, a defense system against oxidative stress. In terms of molecular mechanisms, PWG increased collagen synthesis through activating the transforming growth factor ß (TGF-ß)/Smad pathway and decreased collagen degradation through inhibiting the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) pathway. It also suppressed the inflammatory response through suppressing the nuclear factor-κB (NF-κB) pathway and increased antioxidant enzyme activity through activating the nuclear factor erythroid 2/heme oxygenase 1 (Nrf-2/HO-1) pathway. These multi-target mechanisms suggest that PWG may serve as an effective anti-photoaging material.


Asunto(s)
Fibroblastos , Gadiformes , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Colágeno Tipo I/metabolismo , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/farmacología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Hidrolisados de Proteína/farmacología , Transducción de Señal , Piel , Envejecimiento de la Piel/fisiología , Extractos de Tejidos/uso terapéutico , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Rayos Ultravioleta/efectos adversos
2.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35008651

RESUMEN

The prevalence of atopic dermatitis (AD), a disease characterized by severe pruritus, immune imbalance, and skin barrier dysfunction, is rapidly increasing worldwide. Deacetylasperulosidic acid (DAA) has anti-atopic activity in the three main cell types associated with AD: keratinocytes, mast cells, and eosinophils. Our study investigated the anti-atopic activity of DAA in 2,4-dinitrochlorobenzene-induced NC/Nga mice. DAA alleviated the symptoms of AD, including infiltration of inflammatory cells (mast cells and eosinophils), epidermal thickness, ear thickness, and scratching behavior. Furthermore, DAA reduced serum IgE, histamine, and IgG1/IgG2a ratio and modulated the levels of AD-related cytokines and chemokines, namely interleukin (IL)-1ß, IL-4, IL-6, IL-9, IL-10, IL-12, tumor necrosis factor-α, interferon-γ, thymic stromal lymphopoietin, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated on activation the normal T cell expressed and secreted in the serum. DAA restored immune balance by regulating gene expression and secretion of Th1-, Th2-, Th9-, Th17-, and Th22-mediated inflammatory factors in the dorsal skin and splenocytes and restored skin barrier function by increasing the expression of the pro-filaggrin gene and barrier-related proteins filaggrin, involucrin, and loricrin. These results suggest DAA as a potential therapeutic agent that can alleviate the symptoms of AD by reducing pruritus, modulating immune imbalance, and restoring skin barrier function.


Asunto(s)
Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dinitroclorobenceno/efectos adversos , Inmunidad/efectos de los fármacos , Extractos Vegetales/farmacología , Prurito/tratamiento farmacológico , Piel/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Quimiocinas/metabolismo , Dermatitis Atópica/metabolismo , Proteínas Filagrina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Proteínas de la Membrana/farmacología , Ratones , Precursores de Proteínas/farmacología , Prurito/metabolismo , Piel/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
3.
Molecules ; 26(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070943

RESUMEN

The medicinal plant noni (Morinda citrifolia) is widely dispersed throughout Southeast Asia, the Caribbean, and Australia. We previously reported that fermented Noni could alleviate atopic dermatitis (AD) by recovering Th1/Th2 immune balance and enhancing skin barrier function induced by 2,4-dinitrochlorobenzene. Noni has a high deacetylasperulosidic acid (DAA) content, whose concentration further increased in fermented noni as an iridoid constituent. This study aimed to determine the anti-AD effects and mechanisms of DAA on HaCaT, HMC-1, and EOL-1 cells. DAA inhibited the gene expression and secretion of AD-related cytokines and chemokines including interleukin (IL)-1ß, IL-4, IL-6, IL-8, IL-25, IL-33, thymic stromal lymphopoietin, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, thymus and activation-regulated chemokine, macrophage-derived chemokine, and regulated upon activation, normal T cell expressed and secreted, in all cells, and inhibited histamine release in HMC-1 cells. DAA controlled mitogen-activated protein kinase phosphorylation levels and the translocation of nuclear factor-kappa light chain enhancer of activated B cells into the nucleus by inhibiting IκBα decomposition in all the cells. Furthermore, DAA increased the expression of proteins involved in skin barrier functions such as filaggrin and involucrin in HaCaT cells. These results confirmed that DAA could relieve AD by controlling immune balance and recovering skin barrier function.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Glicósidos/farmacología , Línea Celular , Quimiocinas/inmunología , Quimiocinas/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Dermatitis Atópica/patología , Eccema/tratamiento farmacológico , Eccema/patología , Proteínas Filagrina , Glicósidos/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Morinda/metabolismo , Extractos Vegetales/farmacología , Piel/metabolismo , Balance Th1 - Th2/efectos de los fármacos
4.
Molecules ; 26(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513930

RESUMEN

Skin, the organ protecting the human body from external factors, maintains structural and tensile strength by containing many collagen fibrils, particularly type I procollagen. However, oxidative stress by ultraviolet (UV) exposure causes skin photoaging by activating collagen degradation and inhibiting collagen synthesis. Acer tataricum subsp. ginnala extract (AGE) is a herbal medicine with anti-inflammatory and anti-oxidative effects, but there is no report on the protective effect against skin photoaging. Therefore, we conducted research concentrating on the anti-photoaging effect of Acer tataricum subsp. ginnala (AG) in UVB (20 mJ/cm2)-irradiated human dermal fibroblasts (HDF). Then, various concentrations (7.5, 15, 30 µg/mL) of AGE were treated in HDF for 24 h following UVB irradiation. After we performed AGE treatment, the matrix metalloproteinase1 (MMP1) expression was downregulated, and the type I procollagen level was recovered. Then, we investigated the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) and nuclear factor-κB (NF-κB) pathway, which induce collagen breakdown by promoting the MMP1 level and pro-inflammatory cytokines. The results indicated that AGE downregulates the expression of the MAPK/AP-1 pathway, leading to MMP1 reduction. AGE inhibits nuclear translocation of NF-κB and inhibitor of nuclear factor-κB (IκB) degradation. Therefore, it downregulates the expression of MMP1 and pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 increased by UVB. Besides, the TGFß/Smad pathway, which is mainly responsible for the collagen synthesis in the skin, was also analyzed. AGE decreases the expression of Smad7 and increases TGFßRII expression and Smad3 phosphorylation. This means that AGE stimulates the TGFß/Smad pathway that plays a critical role in promoting collagen synthesis. Thus, this study suggests that AGE can be a functional material with anti-photoaging properties.


Asunto(s)
Acer/química , Fibroblastos/efectos de los fármacos , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Antiinflamatorios/farmacología , Células Cultivadas , Colágeno Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Piel/metabolismo , Proteínas Smad/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Toxicol Appl Pharmacol ; 386: 114844, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31785243

RESUMEN

When the human skin is chronically exposed to external stimuli such as ultraviolet (UV) radiation, the skin tissue suffers damage and the structure of the extracellular matrix (ECM) in the skin is disrupted. This eventually causes symptoms such as wrinkles loss of elasticity, skin sagging, and skin cancer. We previously found that hydrolysate extracted from pacific oyster (Crassostrea gigas) is effective in improving wrinkle formation. In this study, we selected a pentapeptide that was expected to have the most wrinkle reduction effect among the various peptides in oyster hydrolysate through preliminary in vitro screening and examined whether the pentapeptide derived from oyster hydrolysate (OHP) is effective in reducing wrinkles in vivo. We investigated the wrinkle-reducing effect of the OHP through 18-week SKH-1 hairless mice model. Our results showed that the OHP reduces wrinkles lengths, depths, and epidermal thickness which were increased by UVB radiation, and restores the amount of collagen. The OHP recovered the activity of antioxidant enzymes and regulated the expression of proinflammatory cytokines. We also found that OHP increases the expression of type I collagen through stimulating the TGFß/Smad signaling pathway and inhibits the MMPs expression by regulating the MAPK/AP-1 signaling pathway. This study has shown that the OHP plays crucial roles in collagen production and wrinkle reduction in hairless mice and we proved the possibility of the OHP as a component for inhibiting wrinkle formation which was induced by photoaging.


Asunto(s)
Crassostrea/química , Péptidos/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Animales , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/patología , Femenino , Hidrólisis , Hylobatidae , Ratones , Ratones Pelados , Péptidos/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Envejecimiento de la Piel/patología
6.
Medicina (Kaunas) ; 56(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321982

RESUMEN

Background and objectives: Chrysanthemum zawadskii var. latilobum (CZ), which has traditionally been used as a oriental tea in Asia, is known to have anti-inflammatory effects in osteoarthritis (OA). But the mechanism of these effects has not been made clear and it needs to be elucidated specifically for the clinical use of CZE in OA. Materials and Methods: To reveal this mechanism, we first identified which biomarkers were expressed in the joints of rats in which OA had been induced with monosodium iodoacetate and determined whether CZ extract (CZE) could normalize these biomarkers in the progression of OA. The anti-osteoarthritis effect of CZE was evaluated for its capability to inhibit levels of extracellular matrix (ECM)-degrading enzymes and enhance ECM synthesis. We also sought to identify whether the marker compound of CZE, linarin, has anti-osteoarthritic effects in the human chondrosarcoma cell line SW1353. Results: The changes in matrix metalloproteinases (MMPs) were remarkable: among them, MMP-1, MMP-3, MMP-9 and MMP-13 were most strongly induced, whereas their expressions were inhibited by CZE dose dependently. The expressions of the ECM synthetic genes, COL2A1 and ACAN, and the transcription factor SOX9 of these genes were reduced by OA induction and significantly normalized by CZE dose dependently. SOX9 is also a repressor of ECM-degrading aggrecanases, ADAMTS-4 and ADAMTS-5, and CZE significantly reduced the levels of these enzymes dose dependently. Similar results were obtained using the human chondrosarcoma cell line SW1353 with linarin, the biologically active compound of CZE. Conclusions: These anti-osteoarthritic effects suggest that CZE has mechanisms for activating ECM synthesis with SOX9 as well as inhibiting articular ECM-degrading enzymes.


Asunto(s)
Chrysanthemum , Osteoartritis , Animales , Condrocitos , Humanos , Interleucina-1beta , Osteoartritis/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas
7.
Mol Vis ; 25: 118-128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820147

RESUMEN

Purpose: As the aging population is increasing, the incidence of age-related cataract is expected to increase globally. The surgical intervention, a treatment for cataract, still has complications and is limited to developed countries. In this study, we investigated whether the polyphenol-enriched fraction of Vaccinium uliginosum L. (FH) prevents cataract formation in Sprague-Dawley (SD) rat pups. Methods: Sixty rat pups were randomly divided into six groups: CTL, Se, FH40, FH80, FH120, and Cur80. The cataract was induced with subcutaneous injection of sodium selenite (18 µmol/kg bodyweight) on postnatal (P) day 10. All groups, except CTL, were injected with sodium selenite, and the FH40, FH80, and FH120 groups were given gastric intubation with FH40 mg/kg, 80 mg/kg, and 120 mg/kg on P9, P10, and P11. The Cur80 group was also given gastric intubation with curcumin 80 mg/kg on P9, P10, and P11. All rat pups were euthanized on P30. Results: Lens morphological analysis showed that FH dose-dependently inhibited cataract formation. In the Se group, soluble proteins were insolubilized, and the gene expression of the α-, ß-, and γ-crystallins was downregulated. However, FH treatment statistically significantly inhibited insolubilization of soluble proteins and downregulation of the gene expression of the α-, ß-, and γ-crystallins. In the Se group, the gene and protein levels of m-calpain were downregulated, which were attenuated with FH treatment. In addition, sodium selenite injection caused reduced antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GPx)), glutathione (GSH) depletion, and malondialdehyde (MDA) production in the lens. The administration of FH inhibited sodium selenite-induced oxidative stress in a dose-dependent manner. The mechanism of protection against oxidative stress by FH involves NF-E2-related factor (Nrf-2) and hemoxygenase-1 (HO-1). FH treatment inhibited decrease of Nrf-2 in the nucleus fraction and HO-1 in the cytosol fraction. Finally, the FH treatment protected poly (ADP)-ribose polymerase (PARP) from cleavage, determined with western blotting. Conclusions: FH showed a preventive effect against cataract formation by inhibiting m-calpain-mediated proteolysis and oxidative stress in the lens. These results suggest that FH could be a potential anticataract agent in age-related cataract.


Asunto(s)
Antioxidantes/farmacología , Arándanos Azules (Planta)/química , Catarata/prevención & control , Proteínas del Ojo/genética , Regulación de la Expresión Génica/efectos de los fármacos , Polifenoles/farmacología , Animales , Animales Recién Nacidos , Antioxidantes/aislamiento & purificación , Calpaína/genética , Calpaína/metabolismo , Catarata/inducido químicamente , Catarata/genética , Catarata/patología , Proteínas del Ojo/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Cristalino/efectos de los fármacos , Cristalino/metabolismo , Cristalino/patología , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Polifenoles/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Selenito de Sodio/administración & dosificación , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo , beta-Cristalinas/genética , beta-Cristalinas/metabolismo , gamma-Cristalinas/genética , gamma-Cristalinas/metabolismo
8.
Photochem Photobiol Sci ; 18(6): 1436-1446, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30949655

RESUMEN

Chronic ultraviolet (UV) irradiation induces wrinkle formation. UV exposure increases reactive oxygen species (ROS) and upregulates the expression of matrix metalloproteinases (MMPs), which results in skin photoaging. Oyster (Crassostrea gigas), which is an abundant food resource in Asia and Europe, contains various sources of biological compounds and has several effects. Also, oyster hydrolysate (OH) has many biological activities. We investigated the inhibitory effects of OH on wrinkle formation in UVB-irradiated hairless mice. We induced UVB irradiation in hairless mice for 18 weeks and administered OH orally from the 9th week to the 18th week. We performed skin replicas and histological analyses in UVB-irradiated hairless mice dorsal skins. To determine the inhibitory mechanism of OH on wrinkle formation, we measured gene and protein expressions in dorsal skin using RT-qPCR and western blot analyses respectively. In our study, OH decreases wrinkle formation, epidermal thickness and collagen degradation in UVB-irradiated hairless mice. The gene expressions of MMPs were decreased and the gene expressions of collagen type I and TIMP-1 were increased in OH administered groups. Like gene expression tendencies, the protein expressions of MMPs were reduced and that of collagen type I was increased. Furthermore, the phosphorylation levels of ERK, JNK, and p38 were reduced in OH administered groups. We found that OH inhibits wrinkle formation, skin thickening, and collagen degradation by downregulating the MMP expression via the regulation of phosphorylation of MAPK. The results showed that OH significantly prevents UVB-induced photoaging in dorsal skin. Consistent with in vivo data, OH has potential as an anti-wrinkle agent.


Asunto(s)
Extractos Celulares/administración & dosificación , Extractos Celulares/farmacología , Crassostrea/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Hidrólisis , Masculino , Ratones , Ratones Pelados , Estructura Molecular , Relación Estructura-Actividad
9.
Phytother Res ; 32(6): 1135-1143, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29484729

RESUMEN

Korean red pine (Pinus densiflora) bark has been traditionally used in Korea and other parts of East Asia to relieve inflammatory diseases. Although many studies using P. densiflora bark have been reported, its effect on atopic dermatitis (AD) has not been elucidated. Thus, we investigated whether the P. densiflora bark extract (PBE) has potential to attenuate AD symptoms and elucidated the molecular mechanism. Oral administration of PBE to mice with 2,4-dinitrochlorobenzene (DNCB)-induced AD lessened dermatitis scores and scratching behavior and significantly reduced measures of epidermal thickness, infiltration of mast cells and eosinophils, levels of immunoglobulin E (IgE), and IgG1 /IgG2a ratio in serum. PBE not only inhibited IL-4, IL-5, and IL-13 but also increased IFN-γ in splenic production. Furthermore, PBE significantly suppressed mRNA expression of thymic stromal lymphopoietin and further downregulated the mRNA expression of Th2 and Th17 cytokines such as IL-4, IL-13, IL-17, IL-31, and TNF-α. In addition, the protein expressions of filaggrin, involucrin, and loricrin in lesional skin were recovered by PBE. These results suggest that PBE attenuates DNCB-induced AD via regulating Th1/Th2 balance and skin barrier function.


Asunto(s)
Dermatitis Atópica/inducido químicamente , Dinitroclorobenceno/efectos adversos , Piel/efectos de los fármacos , Balance Th1 - Th2/genética , Animales , Masculino , Ratones
10.
Mol Vis ; 23: 638-648, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28943754

RESUMEN

PURPOSE: Rat pups treated with sodium selenite are typically used as an in vivo model to mimic age-related nuclear cataract. Reactive oxygen species (ROS) production, lipid peroxidation, reduction of antioxidant enzymes, crystalline proteolysis, and apoptosis are considered factors that contribute to pathogenesis of age-related nuclear cataract. In the present study, we investigated whether Pinus densiflora bark extract has potential to prevent cataract formation and elucidated the underlying mechanism. METHODS: Sprague Dawley rats were divided into six groups (n=10). Group 1 rat pups (the control) were treated with only normal saline. The rat pups in groups 2 to 6 were given a subcutaneous injection with sodium selenite (18 µmol/kg bodyweight) on postnatal (P) day 10. Group 3 rat pups (the positive control) were given gastric intubation with curcumin (80 mg/kg bodyweight) on P9, P10, and P11. The rat pups in groups 4 to 6 were given gastric intubation with P. densiflora bark extract 40 mg/kg, 80 mg/kg, and 120 mg/kg, respectively, on P9, P10, and P11. RESULTS: This study showed that P. densiflora bark extract dose-dependently prevented cataract formation. Water-soluble protein, glutathione, superoxide dismutase, glutathione peroxidase, and catalase activity levels were found to be high, and conversely, water-insoluble protein, malondialdehyde, and Ca2+-ATPase were found to be low in the groups treated with P. densiflora bark extract compared to group 2. Real-time PCR analysis showed αA-crystalline, lens-specific m-calpain (Lp84), lens-specific intermediates (filensin and phakinin), and antiapoptotic factor (Bcl-2) were downregulated, and the apoptotic factors (caspase-3 and Bax) and plasma membrane Ca2+-ATPase (PMCA-1) were upregulated in group 2 compared to group 1. P. densiflora bark extract regulated the imbalance of these genes. The increased cleavage form of caspase-3 was lowered in the groups treated with P. densiflora bark extract. In conclusion, P. densiflora bark extract prevented selenite-induced cataract formation via regulating antioxidant enzymes, inhibiting m-calpain-induced proteolysis, and apoptosis, and thus, maintained the transparency of the lens. CONCLUSIONS: These results suggested that P. densiflora bark extract could be a new agent for preventing age-related nuclear cataract.


Asunto(s)
Catarata/prevención & control , Cristalino/efectos de los fármacos , Fitoterapia , Pinus , Corteza de la Planta/química , Extractos Vegetales/uso terapéutico , Animales , ATPasas Transportadoras de Calcio/metabolismo , Catalasa/metabolismo , Catarata/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Cristalino/metabolismo , Cristalino/patología , Malondialdehído/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Selenito de Sodio/toxicidad , Superóxido Dismutasa/metabolismo
11.
BMC Complement Altern Med ; 16: 116, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052448

RESUMEN

BACKGROUND: Seungma-Galgeun-Tang (SMGGT), a traditional herbal medicinal formula, has been used to treat various skin problems such as inflammation and rashes in Korean traditional medicine. In order to clarify the scientific evidence for the biological efficacy of SMGGT on the prevention of skin aging and in particular wrinkle formation, molecular anti-wrinkle parameters were evaluated in cultured human dermal fibroblasts. METHODS: Standard SMGGT was prepared from KFDA-certified herbal medicines and the chemical fingerprint of SMGGT was verified by HPLC-ESI-MS to insure the quality of SMGGT. To evaluate the inhibitory effects of SMGGT on the synthesis of matrix metalloproteinase-1 (MMP-1) and type-1 procollagen, the content of MMP-1 and type-1 procollagen synthesizing enzymes in cultured human dermal fibroblasts were measured using an ELISA kit and Western Blot, respectively. RESULTS: The treatment of SMGGT water extract significantly inhibited the production of MMP-1 and promoted type-1 procollagen synthesis concentration dependently. CONCLUSIONS: These results suggest that SMGGT has the potential to prevent wrinkle formation by down-regulating MMP-1 and up-regulating type-1 procollagen in human dermal fibroblasts.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Metaloproteinasa 1 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Procolágeno/biosíntesis , Envejecimiento de la Piel/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Cromatografía Líquida de Alta Presión , Fibroblastos/efectos de los fármacos , Humanos , Masculino , Adulto Joven
12.
BMC Complement Altern Med ; 16: 223, 2016 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-27424198

RESUMEN

BACKGROUND: In this study, the anti-melanogenesis efficacy of clinically used herbal prescription LASAP-C, which consists of four herbal medicines-Rehmanniae Radix Crudus, Lycii Fructus, Scutellariae Radix, and Angelicae Dahuricae Radix, was investigated. METHODS: The chemical profile of LASAP-C was established by conducting ultra-performance liquid chromatography-electrospray ionization-mass spectrometry. Anti-melanogenic efficacy was evaluated by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells. In vivo evaluation was performed by using zebrafish model. RESULTS: Molecular evidences suggested that melanin synthesis was inhibited via the down-regulation of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expression in B16F10 melanoma cells treated with LASAP-C. The anti-melanogenesis efficacy was also confirmed in vivo by using the zebrafish model. CONCLUSION: The results of this study provide strong evidences that LASAP-C can be used as an active component in cosmeceutical products for reducing excess pigmentation in the human skin.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Melaninas/biosíntesis , Melanoma Experimental/tratamiento farmacológico , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Oxidorreductasas Intramoleculares/metabolismo , Melanoma Experimental/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Preparaciones Farmacéuticas , Pigmentación/efectos de los fármacos , Pez Cebra
13.
Phytother Res ; 30(12): 2036-2043, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27573551

RESUMEN

Estrogen receptor (ER)α-positive breast cancer cells regulate the expression of estrogen-responsive genes, which are involved in cell proliferation, differentiation, and cell cycle progression. Clinically, the inhibition of ERα-mediated gene expression in breast cancer cells has long been considered an effective way to prevent the development and progression of cancer. Germacrone, a terpenoid compound isolated from Rhizoma curcuma, has been known to have antitumor activity in various human cancer cell lines. However, the mechanism by which germacrone inhibits the proliferation of breast cancer cells is still unclear. Here, we demonstrated that germacrone inhibits ERα-mediated gene expression at the transcriptional level in MCF-7 cells. Germacrone inhibits the recruitment of ERα to the estrogen response element on chromatin and consequently compromises the binding of switch/sucrose non-fermentable chromatin remodeling complex and RNA polymerase II to target gene promoter, thereby inhibiting the estrogen-induced chromatin accessibility. In addition, germacrone efficiently potentiates the antitumor activity of methotrexate and 5-fluorouracil. Our results not only provide substantial molecular mechanism of germacrone on ERα-mediated signaling in breast cancer cells but also demonstrate the benefits of germacrone as a combination therapy with other drugs for the treatment of breast cancer. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Sesquiterpenos de Germacrano/química , Línea Celular Tumoral , Proliferación Celular , Medicamentos Herbarios Chinos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Sesquiterpenos de Germacrano/farmacología , Transducción de Señal
14.
Nutrients ; 16(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201986

RESUMEN

The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1ß, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.


Asunto(s)
Extractos Vegetales , Sarcopenia , Withania , Humanos , Animales , Ratones , Lactante , Persona de Mediana Edad , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Etanol , Inflamación , Peso Corporal
15.
Biosci Biotechnol Biochem ; 77(1): 58-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23291772

RESUMEN

Considering the growing evidence of the presence of antioxidant compounds in plant extracts, the objectives of this study were to identify antioxidant compounds in Lindera obtusiloba Blume (Lauraceae) and to evaluate their antimelanogenic activities on B16F10 melanoma cells. Organic solvent fractions were separated from L. obtusiloba extracts (LOE). The ethyl acetate fraction (LOE-E) was significantly active against oxidative damage induced by tert-butyl hydroperoxide in primary rat hepatocytes. Two single purified compounds, quercitrin (quercetin-3-O-α-L-rhamnopyranoside) and afzelin (kaempferol-3-O-α-L-rhamnoside), were identified by HPLC and NMR. These compounds were evaluated for antioxidant activities by 1,1-diphenyl 2-picrylhydrazyl (DPPH) radical scavenging assay and ferric reducing antioxidant power (FRAP) assay, and for their antimelanogenic activities by tyrosinase inhibitory assay melanin formation inhibition assay and Western bolt analysis for the signaling pathway. The significant effects of quercitrin on antioxidant and antimelanogenic activities, and signal modulation of ERK and MITF in B16F10 melanoma cells were observed. This is the first report to identify quercitrin in L. obtusiloba and its whitening effect.


Asunto(s)
Antioxidantes/aislamiento & purificación , Lindera/química , Manósidos/aislamiento & purificación , Melaninas/antagonistas & inhibidores , Extractos Vegetales/aislamiento & purificación , Proantocianidinas/aislamiento & purificación , Quercetina/análogos & derivados , Acetatos/química , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Manósidos/farmacología , Melaninas/biosíntesis , Melanoma Experimental/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Picratos/antagonistas & inhibidores , Extractos Vegetales/farmacología , Cultivo Primario de Células , Proantocianidinas/farmacología , Quercetina/aislamiento & purificación , Quercetina/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , terc-Butilhidroperóxido/farmacología
16.
J Ginseng Res ; 47(1): 65-73, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644394

RESUMEN

Background: Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods: To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results: GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-Ⅱ, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions: GBE could be a potential agent to prevent dry AMD and progression to wet AMD.

17.
Artículo en Inglés | MEDLINE | ID: mdl-23133493

RESUMEN

Vaccinium uliginosum L. (VU) possesses various biological properties, such as antioxidant and protective effects against VU-induced skin photoaging. The purpose of this study is to evaluate the effects of oral administration of a mixture of polyphenols and anthocyanins derived from VU on 2,4-dinitrochlorobenzene- (DNCB-) induced atopic dermatitis (AD) in NC/Nga mice. We assessed anti-AD effects in NC/Nga murine model for a period of 9 weeks. Oral administration of the mixture significantly alleviated the AD-like skin symptoms and clinical signs including ear thickness and scratching behaviors. Orally administrated mixture reduced the level of IgE and IgG1, whereas it increased the level of IgG2a in a dose-dependent manner. The calculated IgG1/IgG2a ratio for each mouse revealed that the mixture derived from VU also significantly reduced the Th2/Th1 ratio, IL-4 and IL-13 (as Th2 cytokines), IFN-γ, and IL-12 (as a Th1 cytokine) in spleens. In addition, it significantly decreased gene expression, such as IL-4, IL-5, CCR3, eotaxin-1, IL- 12, IFN-γ, MCP-1, and IL-17, in AD-like lesions and suppressed Th17. Histological analyses revealed that the epidermis thickness and number of inflammatory cells were significantly reduced. In conclusion, oral administration of the mixture in the DNCB-induced AD is confirmed to improve AD disease in mice.

18.
Phytomedicine ; 96: 153877, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35026519

RESUMEN

BACKGROUND: The incidence of sarcopenic obesity, muscle atrophy induced by obesity, has steadily increased and is emerging as a health problem. Although the anti-obesity effect of Codonopsis lanceolata (CL) is known, its efficacy against sarcopenic obesity has not been studied. PURPOSE: We aimed to investigate the effect of CL on sarcopenic obesity and the changes in the related mechanisms to confirm the potential of CL as an effective natural therapeutic agent for sarcopenic obesity. METHODS: C57BL/6 mice were fed a high-fat diet (HFD) for 9 weeks, and CL was administered for 6 weeks with HFD feeding. Body weight and grip strength were measured twice a week. After sacrifice, muscle fiber histological analysis, blood lipid analysis, muscle triglyceride extraction, western blot, and real-time PCR were performed. High-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS) analysis and in vitro experiments using C2C12 cells were performed to verify the main and active compounds of CL. Confluent C2C12 cells were differentiated for 4 days, and then the main compound of CL was co-treated with palmitic acid for 24 h. RESULTS: CL reduced body weight, mass of three fat tissues (epididymal fat, mesenteric fat, and perirenal fat), adipocyte cross-sectional area (CSA), and improved insulin signaling. Simultaneously, CL improved grip strength, mass of three muscle tissues (quadriceps, gastrocnemius, and soleus), and muscle fiber CSA. These results were due to the recovery of both the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt) signaling pathway and lipid metabolisms in skeletal muscle. Lipids accumulated in skeletal muscle interrupt the PI3K/Akt pathway, but CL reduced intramyocellular triglyceride concentration by restoring gene expression of factors related to triglyceride synthesis and fatty acid oxidation. Therefore, the activated PI3K/Akt pathway enhanced muscle protein synthesis by increasing phosphorylation of ribosomal protein S6 kinase 1 and eIF4E-binding protein 1 and suppressed muscle protein degradation by decreasing expression of muscle ring finger-1 and muscle atrophy F-box protein. In addition, tangshenoside I (TS) was verified as the main compound of CL by HPLC-ESI-MS analysis, and its efficacy of inhibiting myotube atrophy and lipid accumulation in myotubes was confirmed, verifying that TS is an active compound. CONCLUSION: CL is an effective natural material for sarcopenic obesity that suppresses muscle atrophy by inhibiting the accumulation of lipids in skeletal muscle through restoration of impaired PI3K/Akt pathway and lipid metabolism.


Asunto(s)
Codonopsis , Sarcopenia , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología
19.
Nutrients ; 14(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35276761

RESUMEN

Age-related macular degeneration (AMD) is a significant visual impairment in older people, and there is no treatment for dry AMD. Spirulina maxima (S. maxima), a cyanobacterium, has inhibitory effects against oxidative stress. However, the protective effects of S. maxima and its underlying mechanisms on blue light (BL)-caused macular degeneration are unknown. We aimed to investigate the protective effects of S. maxima on blue light-caused retinal damage and demonstrate its underlying mechanisms in human retinal pigment epithelial (ARPE-19) cells and Balb/c retinas. Additionally, the active component of S. maxima was examined in the RPE cells. In vitro, S. maxima decreased BL-induced RPE cell death by inhibiting reactive oxygen species (ROS) production. S. maxima inhibited BL-induced inflammation via regulating the NF-κB pathway, inflammatory-related gene expression, and the apoptosis pathway in RPE cells. In vivo, administration of S. maxima inhibited BL-induced retinal degeneration by restoring the thicknesses of whole retina, ONL (outer nuclear layer), INL (inner nuclear layer), and PL (photoreceptor layer) by BL exposure. Phycocyanin exerted protective effects in the pre-and post-treatment system. Therefore, S. maxima could be a potential nutraceutical approach to intercept the patho-physiological processes leading to dry AMD and advancement to wet AMD. Moreover, phycocyanin was a major active compound of S. maxima. These findings need to be investigated in human studies, particularly through a clinical trial.


Asunto(s)
Spirulina , Animales , Línea Celular , Luz , Ratones , Ratones Endogámicos BALB C , Epitelio Pigmentado de la Retina
20.
Phytomedicine ; 100: 154058, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35349834

RESUMEN

BACKGROUND: Skeletal muscle atrophy is caused by aging, disuse, malnutrition, and several diseases. However, there are still no effective drugs or treatments for muscle atrophy. Codonopsis lanceolata (CL), a traditional medicinal plant and food, has been reported to have anti-oxidative, anti-inflammatory, anti-tumor, and anti-obesity effects. PURPOSE: This study aimed to investigate the efficacy and active component of CL on muscle atrophy in vitro and to confirm the effect of CL and its active component on muscle atrophy and the underlying molecular mechanisms in vivo. STUDY: design/Methods This study used the dexamethasone (Dex)-induced muscle atrophy C2C12 myotube model and immobilization (IM)-induced muscle atrophy C57BL/6 mice model. In vitro study, the myotube diameter was measured. In vivo study, the grip strength, muscle mass (quadriceps, gastrocnemius, and soleus) and muscle fiber cross-sectional area (CSA) was measured. Western blot analysis and qRT-PCR were performed to confirm the underlying molecular mechanisms Results:In vitro study, CL and its main component, Tangshenoside I (TSI), effectively restored C2C12 myotube diameters decreased by Dex. Surprisingly, TSI was identified as the active component responsible for the overall efficacy of CL on muscle atrophy. In vivo study, CL and TSI, dose-dependently increased grip strength, mass muscle, and muscle fiber CSA reduced by IM. In the molecular mechanism studies, CL and TSI increased muscle protein synthesis via activating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin complex 1 (mTORC1) pathway and decreased muscle protein degradation via inhibiting the muscle ring finger-1 (MuRF1) and muscle atrophy F-box protein (Atrogin-1) expressions. It also upregulated mitochondrial biogenesis via the silent information regulator 1 (SIRT1)/ peroxisome proliferator-activated receptor gamma and coactivator-1 alpha (PGC-1α) pathway. CONCLUSION: This study suggests that CL and its active component, TSI, can be potential drug candidates for the prevention and treatment of muscle atrophy.


Asunto(s)
Codonopsis , Proteínas Proto-Oncogénicas c-akt , Animales , Disacáridos , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA