Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915705

RESUMEN

Arterial thrombosis, which represents a critical complication of cardiovascular diseases, is a leading cause of death and disability worldwide with no effective bioassay for clinical prediction. As a symbolic feature of arterial thrombosis, severe stenosis in the blood vessel creates a high-shear, high-gradient flow environment that effectively facilitates platelet aggregation towards vessel occlusion even with platelet amplification loops inhibited. However, no approach is currently available to comprehensively characterize the size, composition and platelet activation status of thrombi forming under this biorheological condition. Here, we present a thrombus profiling assay that monitors the multi-dimensional attributes of thrombi forming in conditions mimicking the physiological scenario of arterial thrombosis. Using this platform, we demonstrate that different receptor-ligand interactions contribute distinctively to the composition and activation status of the thrombus. Our investigation into hypertensive and older individuals reveals intensified biomechanical thrombogenesis and multi-dimensional thrombus profile abnormalities, demonstrating a direct contribution of mechanobiology to arterial thrombosis and endorsing the diagnostic potential of the assay. Furthermore, we identify the hyperactivity of GPIbα-integrin αIIbß3 mechanosensing axis as a molecular mechanism that contributes to hypertension-associated arterial thrombosis. By studying the interactions between anti-thrombotic inhibitors and hypertension, and the inter-individual variability in personal thrombus profiles, our work reveals a critical need for personalized anti-thrombotic drug selection that accommodates each patient's pathological profile.

2.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526365

RESUMEN

Injuries to peripheral nerves are frequent, yet no drug therapies are available for effective nerve repair. The slow growth rate of axons and inadequate access to growth factors challenge natural repair of nerves. A better understanding of the molecules that can promote the rate of axon growth may reveal therapeutic opportunities. Molecular profiling of injured neurons at early intervals of injury, when regeneration is at the maximum, has been the gold standard for exploring growth promoters. A complementary in vitro regenerative priming model was recently shown to induce enhanced outgrowth in adult sensory neurons. In this work, we exploited the in vitro priming model to reveal novel candidates for adult nerve regeneration. We performed a whole-tissue proteomics analysis of the in vitro primed dorsal root ganglia (DRGs) from adult SD rats and compared their molecular profile with that of the in vivo primed, and control DRGs. The proteomics data generated are available via ProteomeXchange with identifier PXD031927. From the follow-up analysis, Bioinformatics interventions, and literature curation, we identified several molecules that were differentially expressed in the primed DRGs with a potential to modulate adult nerve regrowth. We then validated the growth promoting roles of mesencephalic astrocyte-derived neurotrophic factor (MANF), one of the hits we identified, in adult rat sensory neurons. Overall, in this study, we explored two growth priming paradigm and shortlisted several candidates, and validated MANF, as potential targets for adult nerve regeneration. We also demonstrate that the in vitro priming model is a valid tool for adult nerve regeneration studies.


Asunto(s)
Ganglios Espinales , Traumatismos de los Nervios Periféricos , Ratas , Animales , Ganglios Espinales/metabolismo , Proteómica , Ratas Sprague-Dawley , Células Cultivadas , Axones/metabolismo , Regeneración Nerviosa/fisiología , Células Receptoras Sensoriales/fisiología , Traumatismos de los Nervios Periféricos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA