RESUMEN
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Terapia Antirretroviral Altamente ActivaRESUMEN
The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
RESUMEN
[This corrects the article DOI: 10.1371/journal.ppat.1002558.].
RESUMEN
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 µM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Asunto(s)
Antineoplásicos , Indoles , Inhibidores de Proteínas Quinasas , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Indoles/química , Indoles/farmacología , Células MCF-7 , Simulación del Acoplamiento Molecular , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/química , Piridonas/farmacología , Relación Estructura-Actividad , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismoRESUMEN
The HIV-1 capsid protein performs multiple roles in virus replication both during assembly and particle release and during virus trafficking into the nucleus. In order to decipher the roles of capsid protein during early replication, a reliable method to follow its intracellular distribution is required. To complement existing approaches to track HIV-1 capsid during early infection, we developed an HIV-1 imaging strategy, relying on viruses incorporating enhanced green fluorescent protein (eGFP)-tagged capsid (CA-eGFP) protein and mCherry-tagged integrase (IN-mCherry). Wild-type infectivity and sensitivity to inhibition by PF74 point to the functionality of CA-eGFP-containing complexes. Low numbers of CA-eGFP molecules were located inside the viral core and imported into the nucleus without significant loss in intensity. Less than 5% of particles carrying both CA-eGFP and IN-mCherry retained both labelled proteins after nuclear entry, implying a major uncoating event at the nuclear envelope dissociating IN and CA. Still, 20% of all CA-eGFP-containing complexes were detected in the nucleus. Unlike for IN-mCherry complexes, addition of the integrase inhibitor raltegravir had no effect on CA-eGFP-containing complexes, suggesting that these may be not (yet) competent for integration. Our imaging strategy offers alternative visualization of viral capsid trafficking and helps clarify its potential role during integration.IMPORTANCE HIV-1 capsid protein (CA) builds a conical shell protecting viral genomic RNA inside the virus particles. Upon entry into host cells, this shell disassembles in a process of uncoating, which is coordinated with reverse transcription of viral RNA into DNA. After uncoating, a portion of CA remains associated with the viral DNA and mediates its nuclear import and, potentially, integration into host DNA. In this study, we tagged CA with eGFP to follow its trafficking in host cells and address potential CA roles in the nucleus. We found that while functional viruses import the tagged CA into the nucleus, this capsid protein is not part of integration-competent complexes. The roles of nuclear CA thus remain to be established.
Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , VIH-1/fisiología , Integración Viral , Núcleo Celular/virología , Citoplasma/metabolismo , ADN Viral/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Membrana Nuclear/metabolismo , ARN Viral/metabolismo , Replicación Viral , Desencapsidación ViralRESUMEN
The causative mutation responsible for limb girdle muscular dystrophy 1F (LGMD1F) is one heterozygous single nucleotide deletion in the stop codon of the nuclear import factor Transportin 3 gene (TNPO3). This mutation causes a carboxy-terminal extension of 15 amino acids, producing a protein of unknown function (TNPO3_mut) that is co-expressed with wild-type TNPO3 (TNPO3_wt). TNPO3 has been involved in the nuclear transport of serine/arginine-rich proteins such as splicing factors and also in HIV-1 infection through interaction with the viral integrase and capsid. We analyzed the effect of TNPO3_mut on HIV-1 infection using PBMCs from patients with LGMD1F infected ex vivo. HIV-1 infection was drastically impaired in these cells and viral integration was reduced 16-fold. No significant effects on viral reverse transcription and episomal 2-LTR circles were observed suggesting that the integration of HIV-1 genome was restricted. This is the second genetic defect described after CCR5Δ32 that shows strong resistance against HIV-1 infection.
Asunto(s)
Infecciones por VIH/prevención & control , VIH-1/fisiología , Distrofia Muscular de Cinturas/patología , Mutación , Replicación Viral/genética , beta Carioferinas/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Distrofia Muscular de Cinturas/genética , Linaje , Adulto JovenRESUMEN
A permanent cure remains the greatest challenge in the field of HIV research. In order to reach this goal, a profound understanding of the molecular mechanisms controlling HIV integration and transcription is needed. Here we provide an overview of recent advances in the field. Lens epithelium-derived growth factor p75 (LEDGF/p75), a transcriptional coactivator, tethers and targets the HIV integrase into transcriptionally active regions of the chromatin through an interaction with the epigenetic mark H3K36me2/3. This finding prompted us to propose a "block-and-lock" strategy to retarget HIV integration into deep latency. A decade ago, we pioneered protein-protein interaction inhibitors for HIV and discovered LEDGINs. LEDGINs are small molecule inhibitors of the interaction between the integrase binding domain (IBD) of LEDGF/p75 and HIV integrase. They modify integration site selection and therefore might be molecules with a "block-and-lock" mechanism of action. Here we will describe how LEDGINs may become part in the future functional cure strategies.
Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Integrasa de VIH/farmacología , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Unión Proteica , Replicación ViralRESUMEN
Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Línea Celular Tumoral , VIH/enzimología , VIH/genética , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Fosforilación/genética , Factores de Transcripción/genéticaRESUMEN
An amendment to this paper has been published and can be accessed via the original article.
RESUMEN
An amendment to this paper has been published and can be accessed via the original article.
RESUMEN
Mixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the MLL gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with lens epithelium-derived growth factor (LEDGF/p75; encoded by the PSIP1 gene) and MENIN. This complex contributes to the association of MLL and MLL-fusion multiprotein complexes with the chromatin. Several studies have shown that both MENIN and LEDGF/p75 are required for efficient MLL-fusion-mediated transformation and for the expression of downstream MLL-regulated genes such as HOXA9 and MEIS1 In light of developing a therapeutic strategy targeting this complex, understanding the function of LEDGF/p75 in normal hematopoiesis is crucial. We generated a conditional Psip1 knockout mouse model in the hematopoietic compartment and examined the effects of LEDGF/p75 depletion in postnatal hematopoiesis and the initiation of MLL leukemogenesis. Psip1 knockout mice were viable but showed several defects in hematopoiesis, reduced colony-forming activity in vitro, decreased expression of Hox genes in the hematopoietic stem cells, and decreased MLL occupancy at MLL target genes. Finally, in vitro and in vivo experiments showed that LEDGF/p75 is dispensable for steady-state hematopoiesis but essential for the initiation of MLL-mediated leukemia. These data corroborate the MLL-LEDGF/p75 interaction as novel target for the treatment of MLL-rearranged leukemia.
Asunto(s)
Hematopoyesis/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucemia Experimental/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Leucemia Experimental/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Factores de Transcripción/fisiologíaRESUMEN
To achieve productive infection, retroviruses such as HIV stably integrate their reverse transcribed RNA genome into a host chromosome. Each retroviral family preferentially integrates near a unique subset of genomic features. HIV integrase (IN) is targeted to the body of active transcription units through interaction with lens epithelium-derived growth factor (LEDGF/p75). We describe the successful effort to develop inhibitors of the interaction between IN and LEDGF/p75, referred to as LEDGINs. Gammaretroviruses display a distinct integration pattern. Recently, BET (bromo- and extraterminal domain) proteins were identified as the LEDGF/p75 counterparts that target the integration of gammaretroviruses. The identification of the chromatin-readers LEDGF/p75 and BET as cellular cofactors that orchestrate lentiviral or gammaretroviral integration opens new avenues to developing safer viral vectors for gene therapy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/administración & dosificación , Factores de Transcripción/metabolismo , Integración Viral/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Cromatina/efectos de los fármacos , Gammaretrovirus/efectos de los fármacos , Gammaretrovirus/genética , Gammaretrovirus/patogenicidad , Infecciones por VIH/virología , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Lentivirus/efectos de los fármacos , Lentivirus/genética , Lentivirus/patogenicidad , Factores de Transcripción/genética , Integración Viral/efectos de los fármacosRESUMEN
BACKGROUND: Persistence of latent, replication-competent provirus is the main impediment towards the cure of HIV infection. One of the critical questions concerning HIV latency is the role of integration site selection in HIV expression. Inhibition of the interaction between HIV integrase and its chromatin tethering cofactor LEDGF/p75 is known to reduce integration and to retarget residual provirus to regions resistant to reactivation. LEDGINs, small molecule inhibitors of the interaction between HIV integrase and LEDGF/p75, provide an interesting tool to study the underlying mechanisms. During early infection, LEDGINs block the interaction with LEDGF/p75 and allosterically inhibit the catalytic activity of IN (i.e. the early effect). When present during virus production, LEDGINs interfere with proper maturation due to enhanced IN oligomerization in the progeny virions (i.e. the late effect). RESULTS: We studied the effect of LEDGINs present during virus production on the transcriptional state of the residual virus. Infection of cells with viruses produced in the presence of LEDGINs resulted in a residual reservoir that was refractory to activation. Integration of residual provirus was less favored near epigenetic markers associated with active transcription. However, integration near H3K36me3 and active genes, both targeted by LEDGF/p75, was not affected. Also in primary cells, LEDGIN treatment induced a reservoir resistant to activation due to a combined early and late effect. CONCLUSION: LEDGINs present a research tool to study the link between integration and transcription, an essential question in retrovirology. LEDGIN treatment during virus production altered integration of residual provirus in a LEDGF/p75-independent manner, resulting in a reservoir that is refractory to activation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , VIH-1/fisiología , Factores de Transcripción/genética , Integración Viral , Latencia del Virus , Replicación Viral , Línea Celular , Células Cultivadas , Integrasa de VIH/genética , VIH-1/genética , Humanos , Leucocitos Mononucleares/virología , Unión Proteica , Provirus/fisiología , Activación ViralRESUMEN
The karyopherin transportin SR2 (TRN-SR2, TNPO3) is responsible for shuttling specific cargoes such as serine/arginine-rich splicing factors from the cytoplasm to the nucleus. This protein plays a key role in HIV infection by facilitating the nuclear import of the pre-integration complex (PIC) that contains the viral DNA as well as several cellular and HIV proteins, including the integrase. The process of nuclear import is considered to be the bottleneck of the viral replication cycle and therefore represents a promising target for anti-HIV drug design. Previous studies have demonstrated that the direct interaction between TRN-SR2 and HIV integrase predominantly involves the catalytic core domain (CCD) and the C-terminal domain (CTD) of the integrase. We aimed at providing a detailed molecular view of this interaction through a biochemical characterization of the respective protein complex. Size-exclusion chromatography was used to characterize the interaction of TRN-SR2 with a truncated variant of the HIV-1 integrase, including both the CCD and CTD. These experiments indicate that one TRN-SR2 molecule can specifically bind one CCD-CTD dimer. Next, the regions of the solenoid-like TRN-SR2 molecule that are involved in the interaction with integrase were identified using AlphaScreen binding assays, revealing that the integrase interacts with the N-terminal half of TRN-SR2 principally through the HEAT repeats 4, 10, and 11. Combining these results with small-angle X-ray scattering data for the complex of TRN-SR2 with truncated integrase, we propose a molecular model of the complex. We speculate that nuclear import of the PIC may proceed concurrently with the normal nuclear transport.
Asunto(s)
Infecciones por VIH , Integrasa de VIH/química , VIH-1/química , Modelos Moleculares , beta Carioferinas/química , Transporte Activo de Núcleo Celular/genética , Fármacos Anti-VIH/química , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Diseño de Fármacos , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Dominios Proteicos , Secuencias Repetitivas de Aminoácido , Difracción de Rayos X , beta Carioferinas/genética , beta Carioferinas/metabolismoRESUMEN
BACKGROUND: Combination antiretroviral therapy efficiently suppresses HIV replication in infected patients, transforming HIV/AIDS into a chronic disease. Viral resistance does develop however, especially under suboptimal treatment conditions such as poor adherence. As a consequence, continued exploration of novel targets is paramount to identify novel antivirals that do not suffer from cross-resistance with existing drugs. One new promising class of targets are HIV protein-cofactor interactions. Transportin-SR2 (TRN-SR2) is a ß-karyopherin that was recently identified as an HIV-1 cofactor. It has been implicated in nuclear import of the viral pre-integration complex and was confirmed as a direct binding partner of HIV-1 integrase (IN). Nevertheless, consensus on its mechanism of action is yet to be reached. RESULTS: Here we describe the development and use of an AlphaScreen-based high-throughput screening cascade for small molecule inhibitors of the HIV-1 IN-TRN-SR2 interaction. False positives and nonspecific protein-protein interaction inhibitors were eliminated through different counterscreens. We identified and confirmed 2 active compound series from an initial screen of 25,608 small molecules. These compounds significantly reduced nuclear import of fluorescently labeled HIV particles. CONCLUSIONS: Alphascreen-based high-throughput screening can allow the identification of compounds representing a novel class of HIV inhibitors. These results corroborate the role of the IN-TRN-SR2 interaction in nuclear import. These compounds represent the first in class small molecule inhibitors of HIV-1 nuclear import.
Asunto(s)
Antivirales/farmacología , Núcleo Celular/metabolismo , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Replicación Viral/efectos de los fármacos , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antivirales/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Descubrimiento de Drogas , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas PequeñasRESUMEN
Lens epithelium-derived growth factor p75 (LEDGF/p75), a transcriptional co-activator, plays an important role in tethering protein complexes to the chromatin. Through this tethering function LEDGF/p75 is implicated in a diverse set of human diseases including HIV infection and mixed lineage leukemia, an aggressive form of cancer with poor prognosis. Here we provide an overview of recent progress in resolving protein-protein and protein-chromatin interaction mechanisms of LEDGF/p75. This review will focus on two well-characterized domains, the PWWP domain and the integrase binding domain (IBD). The PWWP domain interacts with methylated lysine 36 in histone H3, a marker of actively transcribed genes. The IBD interacts with the IBD binding motif, available in cellular binding partners of LEDGF/p75. Each domain forms an interesting new target for drug discovery.
Asunto(s)
Cromatina/metabolismo , Integrasa de VIH/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Leucemia/metabolismo , Unión Proteica , Dominios ProteicosRESUMEN
Recent advances in fluorescence microscopy provided tools for the investigation and the analysis of the viral replication steps in the cellular context. In the HIV field, the current visualization systems successfully achieve the fluorescent labeling of the viral envelope and proteins, but not the genome. Here, we developed a system able to visualize the proviral DNA of HIV-1 through immunofluorescence detection of repair foci for DNA double-strand breaks specifically induced in the viral genome by the heterologous expression of the I-SceI endonuclease. The system for Single-Cell Imaging of HIV-1 Provirus, named SCIP, provides the possibility to individually track integrated-viral DNA within the nuclei of infected cells. In particular, SCIP allowed us to perform a topological analysis of integrated viral DNA revealing that HIV-1 preferentially integrates in the chromatin localized at the periphery of the nuclei.
Asunto(s)
VIH-1/ultraestructura , Microscopía Fluorescente/métodos , Provirus/ultraestructura , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Roturas del ADN de Doble Cadena , Cartilla de ADN/genética , Reparación del ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II , Humanos , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Saccharomyces cerevisiae , Análisis de la Célula Individual/métodosRESUMEN
Transportin-SR2 (Tnpo3, TRN-SR2), a human karyopherin encoded by the TNPO3 gene, has been identified as a cellular cofactor of HIV-1 replication, specifically interacting with HIV-1 integrase (IN). Whether this interaction mediates the nuclear import of HIV remains controversial. We previously characterized the TRN-SR2 binding interface in IN and introduced mutations at these positions to corroborate the biological relevance of the interaction. The pleiotropic nature of IN mutations complicated the interpretation. Indeed, all previously tested IN interaction mutants also affected RT. Here we report on a virus with a pair of IN mutations, IN(R263A/K264A), that significantly reduce interaction with TRN-SR2. The virus retains wild-type reverse transcription activity but displays a block in nuclear import and integration, as measured by quantitative PCR. The defect in integration of this mutant resulted in a smaller increase in the number of two-long terminal repeat circles than for virus specifically blocked at integration by raltegravir or catalytic site mutations (IN(D64N/D116N/E152Q)). Finally, using an eGFP-IN-labeled HIV fluorescence-based import assay, the defect in nuclear import was corroborated. These data altogether underscore the importance of the HIV-IN TRN-SR2 protein-protein interaction for HIV nuclear import and validate the IN/TRN-SR2 interaction interface as a promising target for future antiviral therapy.
Asunto(s)
Integrasa de VIH/genética , VIH-1/genética , Mutación , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Sitios de Unión/genética , Unión Competitiva , Western Blotting , Núcleo Celular/virología , Integrasa de VIH/química , Integrasa de VIH/metabolismo , VIH-1/enzimología , VIH-1/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Replicación Viral/genética , beta Carioferinas/químicaRESUMEN
BACKGROUND: The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication. RESULTS: LEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency. CONCLUSION: Together, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation.