Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101616, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065959

RESUMEN

Vitamin D receptor (VDR) levels are highest in the intestine where it mediates 1,25 dihydroxyvitamin D-induced gene expression. However, the mechanisms controlling high intestinal VDR gene expression are unknown. Here, we used Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to identify the regulatory sites controlling intestine-specific Vdr gene expression in the small intestine (villi and crypts) and colon of developing, adult, and aged mice. We identified 17 ATAC peaks in a 125 kb region from intron 3 to -55.8 kb from exon 1 of the Vdr gene. Interestingly, many of these peaks were missing/reduced in the developing intestine. Chromatin ImmunoPrecipitation-Sequencing (ChIP-Seq) peaks for intestinal transcription factors (TFs) were present within the ATAC peaks and at HiChIP looping attachments that connected the ATAC/TF ChIP peaks to the transcription start site and CCCTF-binding factor sites at the borders of the Vdr gene regulatory domain. Intestine-specific regulatory sites were identified by comparing ATAC peaks to DNAse-Seq data from other tissues that revealed tissue-specific, evolutionary conserved, and species-specific peaks. Bioinformatics analysis of human DNAse-Seq peaks revealed polymorphisms that disrupt TF-binding sites. Our analysis shows that mouse intestinal Vdr gene regulation requires a complex interaction of multiple distal regulatory regions and is controlled by a combination of intestinal TFs. These intestinal regulatory sites are well conserved in humans suggesting that they may be key components of VDR regulation in both mouse and human intestines.


Asunto(s)
Intestinos , Receptores de Calcitriol , Animales , Desoxirribonucleasas/genética , Expresión Génica , Regulación de la Expresión Génica , Humanos , Intestinos/metabolismo , Ratones , Receptores de Calcitriol/biosíntesis , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 298(8): 102213, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779631

RESUMEN

1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.


Asunto(s)
Receptores de Calcitriol , Vitamina D , Animales , Genómica , Intestinos , Ratones , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D3 24-Hidroxilasa/genética
3.
Physiol Rev ; 96(1): 365-408, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26681795

RESUMEN

1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.


Asunto(s)
Receptores de Calcitriol/agonistas , Vitamina D/metabolismo , Animales , Calcitriol/metabolismo , Colestanotriol 26-Monooxigenasa/metabolismo , Familia 2 del Citocromo P450 , Suplementos Dietéticos , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Ratones Transgénicos , Fenotipo , Conformación Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Vitamina D/análogos & derivados , Vitamina D/química , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
4.
Physiol Genomics ; 53(11): 486-508, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612061

RESUMEN

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Colon/metabolismo , Medios de Cultivo/farmacología , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo , Transcriptoma/efectos de los fármacos , Calcitriol/farmacología , Colágeno/metabolismo , Colágeno/farmacología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Medios de Cultivo/química , Combinación de Medicamentos , Escherichia coli , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Laminina/metabolismo , Laminina/farmacología , Organoides/virología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , RNA-Seq/métodos , Transcriptoma/genética , Virosis/metabolismo , Virosis/virología , Virus
5.
J Cell Physiol ; 236(12): 8148-8159, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34192357

RESUMEN

A number of studies have examined the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC-specific Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL-6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell-originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2 D3 or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC-specific Rab11a knockout mice (Rab11aΔIEC ). 1,25(OH)2 D3 administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle-injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF-κB (p65) in the knockout intestinal epithelia, reduced tissue-resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Inflamación/tratamiento farmacológico , Intestinos/efectos de los fármacos , Vitamina D/análogos & derivados , Vitamina D/farmacología , Animales , Citocinas/metabolismo , Dieta , Suplementos Dietéticos , Mucosa Intestinal/efectos de los fármacos , Ratones
6.
Handb Exp Pharmacol ; 262: 47-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31792684

RESUMEN

Vitamin D is a principal factor required for mineral and skeletal homeostasis. Vitamin D deficiency during development causes rickets and in adults can result in osteomalacia and increased risk of fracture. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, is responsible for the biological actions of vitamin D which are mediated by the vitamin D receptor (VDR). Mutations in the VDR result in early-onset rickets and low calcium and phosphate, indicating the essential role of 1,25(OH)2D3/VDR signaling in the regulation of mineral homeostasis and skeletal health. This chapter summarizes our current understanding of the production of the vitamin D endocrine hormone, 1,25(OH)2D3, and the actions of 1,25(OH)2D3 which result in the maintenance of skeletal homeostasis. The primary role of 1,25(OH)2D3 is to increase calcium absorption from the intestine and thus to increase the availability of calcium for bone mineralization. Specific actions of 1,25(OH)2D3 on the intestine, kidney, and bone needed to maintain calcium homeostasis are summarized, and the impact of vitamin D status on bone health is discussed.


Asunto(s)
Raquitismo , Vitamina D , Huesos , Calcio/química , Calcio/metabolismo , Humanos
7.
J Cell Physiol ; 234(7): 10345-10359, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30387140

RESUMEN

LL-37, the only known human cathelicidin which is encoded by the human antimicrobial peptide (CAMP) gene, plays a critical role in protection against bacterial infection. We previously demonstrated that cathelicidin is induced by 1,25-dihydroxyvitamin D3 (1,25(OH) 2 D 3 ) in human airway epithelial cells with a resultant increase in bactericidal activity. In this study we identify key factors that co-operate with 1,25(OH) 2 D 3 in the regulation of CAMP. Our results show for the first time that PU.1, the myeloid transcription factor (which has also been identified in lung epithelial cells), co-operates with the vitamin D receptor and CCAAT/enhancer binding protein α (CEBPα) to enhance the induction of CAMP in lung epithelial cells. Our findings also indicate that enhancement of 1,25(OH) 2 D 3 regulation of CAMP by histone deacetylase inhibitors involves co-operation between acetylation and chromatin remodeling through Brahma-related gene 1 (BRG1; a component of the SWItch/sucrose nonfermentable [SWI/SNF] complex). BRG1 can be an activator or repressor depending on BRG1-associated factors. Protein arginine methyltransferase 5 (PRMT5), a methlytransferase which interacts with BRG1, represses 1,25(OH) 2 D 3 induced CAMP in part through dimethylation of H4R3. Our findings identify key mediators involved in the regulation of the CAMP gene in lung epithelial cells and suggest new approaches for therapeutic manipulation of gene expression to increase the antibacterial capability of the airway.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Epigénesis Genética/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Vitamina D/análogos & derivados , Acetilación , Ensamble y Desensamble de Cromatina/genética , Células Epiteliales , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Pulmón , Receptores de Calcitriol/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Vitamina D/genética , Catelicidinas
8.
J Biol Chem ; 292(42): 17559-17560, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29055009

RESUMEN

Although the cytochrome P450 CYP27B1 plays a critical role in vitamin D biology, the molecular mechanisms involved in regulation of CYP27B1 have remained undefined. A new study has identified a kidney-specific control module distal to the Cyp27b1 gene that mediates the basal activity and hormonal regulation of Cyp27b1 This work provides a novel mechanism indicating differential regulation of Cyp27b1 in renal and non-renal cells and has implications for vitamin D biology in multiple sclerosis and perhaps other autoimmune diseases as well.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Riñón/metabolismo , Esclerosis Múltiple/metabolismo , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Animales , Humanos , Esclerosis Múltiple/genética , Vitamina D/genética
9.
Adv Exp Med Biol ; 1033: 3-12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29101648

RESUMEN

The principal function of vitamin D in the maintenance of calcium homeostasis is to increase intestinal calcium absorption. This conclusion was made from studies in vitamin D receptor (VDR) null mice which showed that rickets and osteomalacia were prevented when VDR null mice were fed a rescue diet that included high calcium, indicating that the skeletal abnormalities of the VDR null mice are primarily the result of impaired intestinal calcium absorption. Although vitamin D is critical for controlling intestinal calcium absorption, the mechanisms involved have remained incomplete. This chapter reviews studies, including studies in genetically modified mice, that have provided new insight and have challenged the traditional model of VDR-mediated calcium absorption.


Asunto(s)
Huesos/fisiología , Calcio/metabolismo , Intestinos/fisiología , Vitamina D/metabolismo , Animales , Huesos/metabolismo , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Ratones Noqueados , Modelos Biológicos , Receptores de Calcitriol/deficiencia , Receptores de Calcitriol/genética
10.
J Biol Chem ; 289(49): 33958-70, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25324546

RESUMEN

The SWI/SNF chromatin remodeling complex facilitates gene transcription by remodeling chromatin using the energy of ATP hydrolysis. Recent studies have indicated an interplay between the SWI/SNF complex and protein-arginine methyltransferases (PRMTs). Little is known, however, about the role of SWI/SNF and PRMTs in vitamin D receptor (VDR)-mediated transcription. Using SWI/SNF-defective cells, we demonstrated that Brahma-related gene 1 (BRG1), an ATPase that is a component of the SWI/SNF complex, plays a fundamental role in induction by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the transcription of Cyp24a1 encoding the enzyme 25-hydroxyvitamin D3 24-hydroxylase involved in the catabolism of 1,25(OH)2D3. BRG1 was found to associate with CCAAT-enhancer-binding protein (C/EBP) ß and cooperate with VDR and C/EBPß in regulating Cyp24a1 transcription. PRMT5, a type II PRMT that interacts with BRG1, repressed Cyp24a1 transcription and mRNA expression. Our findings indicate the requirement of the C/EBP site for the inhibitory effect of PRMT5 via its methylation of H3R8 and H4R3. These findings indicate that the SWI/SNF complex and PRMT5 may be key factors involved in regulation of 1,25(OH)2D3 catabolism and therefore in the maintenance of calcium homeostasis by vitamin D. These studies also define epigenetic events linked to a novel mechanism of negative regulation of VDR-mediated transcription.


Asunto(s)
Calcitriol/metabolismo , Calcio/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Proteína-Arginina N-Metiltransferasas/genética , Factores de Transcripción/genética , Vitamina D3 24-Hidroxilasa/genética , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas Cromosómicas no Histona/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Retroalimentación Fisiológica , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética , Vitamina D3 24-Hidroxilasa/metabolismo
11.
J Cell Physiol ; 230(2): 464-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25078430

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) and the vitamin D receptor (VDR) have been reported to have an important role in the regulation of innate immunity. We earlier reported that the antimicrobial peptide cathelicidin is induced by 1,25(OH)2D3 in normal human bronchial epithelial cells with a resultant increase in antimicrobial activity against airway pathogens. In this study, we demonstrate that C/EBP alpha (C/EBPα) is a potent enhancer of human cathelicidin antimicrobial peptide (CAMP) gene transcription in human lung epithelial cells. In addition we found that C/EBPα functionally cooperates with VDR in the regulation of CAMP transcription. A C/EBP binding site was identified at -627/-619 within the CAMP promoter, adjacent to the vitamin D response element (VDRE; -615/-600). Mutation of this site markedly attenuated the transcriptional response to C/EBPα as well as to 1,25(OH)2D3, further indicating cooperation between these two factors in the regulation of CAMP. ChIP analysis using 1,25(OH)2D3 treated human lung epithelial cells showed C/EBPα and VDR binding to the CAMP promoter. C/EBPα has previously been reported to cooperate with Brahma (Brm), an ATPase that is component of the SWI/SNF chromatin remodeling complex. We found that dominant negative Brm significantly inhibited C/EBPα as well as 1,25(OH)2D3 mediated induction of CAMP transcription, suggesting the functional involvement of Brm. These findings define novel mechanisms involving C/EBPα, SWI/SNF, and 1,25(OH)2D3 in the regulation of CAMP in lung epithelial cells. These mechanisms of enhanced activation of the CAMP gene in lung epithelial cells suggest potential candidates for the development of modulators of innate immune responses for adjunct therapy in the treatment of airway infections.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Catelicidinas/metabolismo , Células Epiteliales/metabolismo , Receptores de Calcitriol/metabolismo , Péptidos Catiónicos Antimicrobianos , Sitios de Unión/genética , Calcitriol/metabolismo , Línea Celular , Células Epiteliales/inmunología , Humanos , Pulmón/inmunología , Regiones Promotoras Genéticas , Activación Transcripcional/inmunología
12.
Annu Rev Nutr ; 33: 71-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23642206

RESUMEN

Early studies identifying vitamin D as an antirachitic factor led to studies in vitamin D-deficient models that resulted in a basic understanding of the mechanism of action of vitamin D. Recent studies using genetically modified mice have provided important new insight into the physiological role of vitamin D at target tissues and the functional significance of vitamin D target proteins, as well as the functional significance of proteins involved in the transport and metabolism of vitamin D. Studies using these mice have played an increasingly important role in elucidating the mechanisms involved in the control of calcium homeostasis and have provided evidence for a role of vitamin D in extraskeletal health.


Asunto(s)
Modelos Animales de Enfermedad , Deficiencia de Vitamina D/metabolismo , Vitamina D/metabolismo , Animales , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Deficiencia de Vitamina D/etiología , Deficiencia de Vitamina D/fisiopatología
13.
Front Endocrinol (Lausanne) ; 15: 1310466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352710

RESUMEN

Introduction: Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods: 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion: Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.


Asunto(s)
Calcio , Glucuronidasa , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Glucuronidasa/genética , Glucuronidasa/metabolismo , Ratones Endogámicos C57BL , Fenotipo , Fosfatos , Microtomografía por Rayos X
14.
Cells ; 12(10)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37408241

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D, activates the nuclear vitamin D receptor (VDR) to mediate the transcription of target genes involved in calcium homeostasis as well as in non-classical 1,25(OH)2D3 actions. In this study, CARM1, an arginine methyltransferase, was found to mediate coactivator synergy in the presence of GRIP1 (a primary coactivator) and to cooperate with G9a, a lysine methyltransferase, in 1,25(OH)2D3 induced transcription of Cyp24a1 (the gene involved in the metabolic inactivation of 1,25(OH)2D3). In mouse proximal renal tubule (MPCT) cells and in mouse kidney, chromatin immunoprecipitation analysis demonstrated that dimethylation of histone H3 at arginine 17, which is mediated by CARM1, occurs at Cyp24a1 vitamin D response elements in a 1,25(OH)2D3 dependent manner. Treatment with TBBD, an inhibitor of CARM1, repressed 1,25(OH)2D3 induced Cyp24a1 expression in MPCT cells, further suggesting that CARM1 is a significant coactivator of 1,25(OH)2D3 induction of renal Cyp24a1 expression. CARM1 was found to act as a repressor of second messenger-mediated induction of the transcription of CYP27B1 (involved in the synthesis of 1,25(OH)2D3), supporting the role of CARM1 as a dual function coregulator. Our findings indicate a key role for CARM1 in the regulation of the biological function of 1,25(OH)2D3.


Asunto(s)
Calcitriol , Proteína-Arginina N-Metiltransferasas , Vitamina D3 24-Hidroxilasa , Vitamina D , Animales , Ratones , Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo
15.
Endocrinology ; 164(5)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36960562

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3)-mediated intestinal calcium (Ca) absorption supplies Ca for proper bone mineralization during growth. We tested whether vitamin D receptor (VDR)-mediated 1,25(OH)2D3 signaling is critical for adult Ca absorption and bone by using mice with inducible Vdr gene knockout in the whole intestine (villin-CreERT2+/- × Vdrf/f, WIK) or in the large intestine (Cdx2-CreERT2+/- ×Vdrf/f, LIK). At 4-month-old, Vdr alleles were recombined (0.05 mg tamoxifen/g BW, intraperitoneally [i.p.], 5 days) and mice were fed diets with either 0.5% (adequate) or 0.2% (low) Ca. Ca absorption was examined after 2 weeks while serum 1,25(OH)2D3, bone mass, and bone microarchitecture were examined after 16 weeks. Intestinal and renal gene expression was measured at both time points (n = 12/genotype/diet/time point). On the 0.5% Ca diet, all phenotypes in WIK and LIK mice were similar to the controls. Control mice adapted to the 0.2% low-Ca diet by increasing renal Cyp27b1 mRNA (3-fold), serum 1,25(OH)2D3 level (1.9-fold), and Ca absorption in the duodenum (Dd, + 131%) and proximal colon (PCo, + 28.9%), which prevented bone loss. In WIK mice, low-Ca diet increased serum 1,25(OH)2D3 (4.4-fold) but Ca absorption remained unaltered in the Dd and PCo. Consequently, significant bone loss occurred in WIK mice (e.g., cortical thickness, Ct.Th, -33.7%). LIK mice adapted to the low-Ca diet in the Dd but not the PCo, and the effect on bone phenotypes was milder (e.g., Ct.Th, -13.1%). Our data suggest intestinal VDR in adult mice prevents bone loss under low Ca intake but is dispensable under adequate calcium intake.


Asunto(s)
Calcitriol , Receptores de Calcitriol , Animales , Ratones , Calcio/metabolismo , Absorción Intestinal , Intestinos , Riñón/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo
16.
J Steroid Biochem Mol Biol ; 228: 106247, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36639037

RESUMEN

The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Humanos , Vitaminas
17.
Rev Endocr Metab Disord ; 13(1): 39-44, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21861106

RESUMEN

1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is the major controlling hormone of intestinal calcium absorption. As the body's demand for calcium increases from a diet deficient in calcium, from growth, pregnancy or lactation, the synthesis of 1,25(OH)(2)D(3) is increased resulting in the stimulation of intestinal calcium absorption. However a complete description of the molecular mechanisms involved in the 1,25(OH)(2)D(3) regulated calcium absorptive process remains incomplete. Intestinal calcium absorption occurs by both an active saturable transcellular pathway and a passive nonsaturable paracellular pathway. Each step in the process of transcellular calcium transport (apical entry of calcium, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the plasma membrane pump) has been reported to involve a vitamin D dependent component. This article will review recent studies, including those using knockout mice, that have suggested that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional three step model of transcellular calcium transport. Current concepts are reviewed and questions that remain are addressed. Evidence for a role of 1,25(OH)(2)D(3) in the regulation of the paracellular pathway is also discussed.


Asunto(s)
Calcio/metabolismo , Absorción Intestinal/fisiología , Vitamina D/análogos & derivados , Animales , Calbindinas , Humanos , Modelos Biológicos , Proteína G de Unión al Calcio S100/metabolismo , Vitamina D/metabolismo
18.
Arch Biochem Biophys ; 523(1): 73-6, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22230327

RESUMEN

Calcium is required for many cellular processes including muscle contraction, nerve pulse transmission, stimulus secretion coupling and bone formation. The principal source of new calcium to meet these essential functions is from the diet. Intestinal absorption of calcium occurs by an active transcellular path and by a non-saturable paracellular path. The major factor influencing intestinal calcium absorption is vitamin D and more specifically the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). This article emphasizes studies that have provided new insight related to the mechanisms involved in the intestinal actions of 1,25(OH)(2)D(3). The following are discussed: recent studies, including those using knock out mice, that suggest that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional transcellular model; evidence for 1,25(OH)(2)D(3) mediated active transport of calcium by distal as well as proximal segments of the intestine; 1,25(OH)(2)D(3) regulation of paracellular calcium transport and the role of 1,25(OH)(2)D(3) in protection against mucosal injury.


Asunto(s)
Calcitriol/metabolismo , Calcio/metabolismo , Absorción Intestinal , Envejecimiento/metabolismo , Animales , Humanos , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Fosfatos/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(50): 19655-9, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19073913

RESUMEN

The requirement for TRPV6 for vitamin D-dependent intestinal calcium absorption in vivo has been examined by using vitamin D-deficient TRPV6 null mice and littermate wild-type mice. Each of the vitamin D-deficient animals received each day for 4 days 50 ng of 1,25-dihydroyvitamin D(3) in 0.1 ml of 95% propylene glycol:5% ethanol vehicle or vehicle only. Both the wild-type and TRPV6 null mice responded equally well to 1,25-dihydroxyvitamin D(3) in increasing intestinal calcium absorption. These results, along with our microarray data, demonstrate that TRPV6 is not required for vitamin D-induced intestinal calcium absorption and may not carry out a significant role in this process. These and previous results using calbindin D9k null mutant mice illustrate that molecular events in the intestinal calcium absorption process in response to the active form of vitamin D remain to be defined.


Asunto(s)
Calcitriol/fisiología , Canales de Calcio/fisiología , Calcio/metabolismo , Mucosa Intestinal/metabolismo , Canales Catiónicos TRPV/fisiología , Animales , Calcitriol/farmacología , Calcio/sangre , Canales de Calcio/genética , Femenino , Intestinos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Canales Catiónicos TRPV/genética
20.
JBMR Plus ; 5(12): e10554, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950825

RESUMEN

Calcium is required for the functioning of numerous biological processes and is essential for skeletal health. The major source of new calcium is from the diet. The central role of vitamin D in the maintenance of calcium homeostasis is to increase the absorption of ingested calcium from the intestine. The critical importance of vitamin D in this process is noted in the causal link between vitamin D deficiency and rickets, as well as in studies using genetically modified mice including mice deficient in the vitamin D receptor (Vdr null mice) or in the cytochrome P-450 enzyme, 25-hydroxyvitamin D3-1α- hydroxylase (CYP27B1) that converts 25-hydroxyvitamin D3 to the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (Cyp27b1 null mice). When these mice are fed diets with high calcium and lactose, rickets is prevented. The studies using mouse models provide supporting evidence indicating that the major physiological function of 1,25(OH)2D3/VDR is intestinal calcium absorption. This review summarizes what is known about mechanisms involved in vitamin D-regulated intestinal calcium absorption. Recent studies suggest that vitamin D does not affect a single entity, but that a complex network of calcium-regulating components is involved in the process of 1,25(OH)2D3-mediated active intestinal calcium absorption. In addition, numerous 1,25(OH)2D3 actions in the intestine have been described independent of calcium absorption. Although the translatability to humans requires further definition, an overview is presented that provides compelling evidence from the laboratory of 1,25(OH)2D3 intestinal effects, which include the regulation of adhesion molecules to enhance barrier function, the regulation of intestinal stem cell function, cellular homeostasis of other divalent cations, the regulation of drug metabolizing enzymes, and anti-inflammatory effects. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA