Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 119(44): 10910-6, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26469397

RESUMEN

The emission lifetimes of rhodamine 6G (R6G) were measured under shock compression to 9.1 GPa, with the dual intents of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly(methyl methacrylate) (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and the emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0 to 9 GPa, with a slope of -0.22 ns·GPa(-1). The linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, because lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.

2.
J Sep Sci ; 36(24): 3821-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24132986

RESUMEN

Here, we report efficiencies up to 112,000 plates per meter (a reduced plate height, h, of 2.22) for RP, carbon/nanodiamond/aminopolymer particles using conventional injection conditions in HPLC. This efficiency greatly exceeds our best previously reported value of 71,000 N/m (h = 3.52). The carbon cores used in this study were derived from carbonized poly(divinylbenzene) spheres that were either made in-house by a two-step polymerization procedure or obtained commercially. The resulting particles showed good uniformity and were oxidized in nitric acid to increase their dispersability. X-ray photoelectron spectroscopy confirms particle oxidation and subsequent aminopolymer deposition. Layer-by-layer (LbL) growth of poly(allyamine) and nanodiamond was demonstrated to produce core-shell particles. After LbL growth, the particles were functionalized, sieved, and packed into columns. The column functionalization and packing were reproducible. Van Deemter curves indicated that the commercially obtained poly(divinylbenzene) spheres outperformed those synthesized in our laboratory. The columns appear to be stable at 120°C in a pH 11.3 mobile phase. Longer columns (2.1 × 50 mm) than previously reported were packed. Four essential oils were separated by gradient elution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA