Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microvasc Res ; 122: 131-135, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30144413

RESUMEN

The blood-brain barrier consists of a tightly sealed monolayer of endothelial cells being vital in maintaining a stable intracerebral microenvironment. The barrier is receptive to leakage upon exposure to environmental factors, like hypoxia, and its disruption has been suggested as a constituent in the pathophysiology of both neurological and psychiatric disorders. The schizophrenia associated ZEB1 gene encodes a transcription factor susceptible to transcriptional control by a hypoxia induced factor, HIF1A, known to be implicated in blood-brain barrier dysfunction. However, whether ZEB1 is also implicated in maintaining blood-brain barrier integrity upon hypoxia is unknown. Here we assessed Hif1a, Zo1 and Zeb1 mRNA expression and ZO1 protein abundancy in a mimetic system of the in vivo blood-brain barrier comprising mouse brain endothelial cells subjected to the norm- and proven hypoxic conditions. Despite that, Hif1a mRNA expression was significantly increased, clearly indicating that the oxygen-deprived environment introduced a hypoxia response in the cells, we found no hypoxia-induced changes in neither ZO1 abundancy nor in the expression of Zo1 and Zeb1 mRNA. However, independent of hypoxia status, we found that Zeb1 and Zo1 mRNA expression is highly correlated. Further studies are warranted that investigate the implication of the ZEB1/ZO1 axis in blood-brain barrier maintenance under different physiological conditions.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Microambiente Celular , Células Endoteliales/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
2.
Neuroendocrinology ; 106(2): 167-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28494452

RESUMEN

BACKGROUND/AIM: Variability in the severity and age at onset of autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) may be associated with certain types of variants in the arginine vasopressin (AVP) gene. In this study, we aimed to describe a large family with an apparent predominant female occurrence of polyuria and polydipsia and to determine the underlying cause. METHODS: The family members reported their family demography and symptoms. Two subjects were diagnosed by fluid deprivation and dDAVP challenge tests. Eight subjects were tested genetically. The identified variant along with 3 previously identified variants in the AVP gene were investigated by heterologous expression in a human neuronal cell line (SH-SY5Y). RESULTS: Both subjects investigated clinically had a partial neurohypophyseal diabetes insipidus phenotype. A g.276_278delTCC variant in the AVP gene causing a Ser18del deletion in the signal peptide (SP) of the AVP preprohormone was perfectly co-segregating with the disease. When expressed in SH-SY5Y cells, the Ser18del variant along with 3 other SP variants (g.227G>A, Ser17Phe, and Ala19Thr) resulted in reduced AVP mRNA, impaired AVP secretion, and partial AVP prohormone degradation and retention in the endoplasmic reticulum. Impaired SP cleavage was demonstrated directly in cells expressing the Ser18del, g.227G>A, and Ala19Thr variants, using state-of-the-art mass spectrometry. CONCLUSION: Variants affecting the SP of the AVP preprohormone cause adFNDI with variable phenotypes by a mechanism that may involve impaired SP cleavage combined with effects at the mRNA, protein, and cellular level.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Diabetes Insípida Neurogénica/metabolismo , Variación Genética , Neurofisinas/genética , Neurofisinas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo , Adulto , Línea Celular Tumoral , Niño , Retículo Endoplásmico/metabolismo , Familia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Proteolisis , ARN Mensajero/metabolismo , Factores Sexuales
3.
Neuroendocrinology ; 107(2): 167-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949799

RESUMEN

OBJECTIVE: Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. DESIGN/PATIENTS: Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. METHODS/RESULTS: Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes. CONCLUSION: We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopresinas/genética , Femenino , Variación Genética , Humanos , Masculino , Linaje
4.
Scand J Clin Lab Invest ; 78(1-2): 114-119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29361858

RESUMEN

The synthetic AVP analogue 1-desamino-8-d-arginine-vasopressin (dDAVP) is used for treatment of polyuric disorders. Lack of commercially available assays limits the usefulness of dDAVP as a diagnostic tool in the assessment of renal concentrating capacity. We aimed to develop a specific radioimmunoassay (RIA) for determination of plasma dDAVP (pdDAVP) in order to investigate the relationship between pdDAVP levels and urine osmolality (Uosm). Further, we aimed to determine the onset, duration, and maximum concentrating capacity following intravenous (i.v.) bolus dDAVP injection. The dDAVP assay was based on a well-established RIA for measurements of AVP. Fourteen healthy subjects (aged 15-18 years) participated. Blood and urine samples were collected prior to and after i.v. bolus of 0.03 µg/kg dDAVP. Diuresis and Uosm was measured for nine hours following dDAVP administration. PdDAVP and Uosm were analyzed.We established a specific RIA for the measurement of pdDAVP. All subjects reached maximal pdDAVP concentration (Cmax) 30 minutes following infusion, and a rise in Uosm after 60 minutes. Maximal Uosm varied between subjects, with no direct correlation to the achieved pdDAVP levels. We found no significant intra-individual variation between two dDAVP infusions and the effect was reproducible in terms of Cmax and maximal Uosm. We characterized the relationship between pdDAVP and Uosm after dDAVP bolus injection in healthy adolescents using our dDAVP assay. Maximal Uosm achieved correlated with the baseline Uosm levels and seemed unrelated to achieved pdDAVP levels. The urine concentrating response was maintained at least eight hours.


Asunto(s)
Desamino Arginina Vasopresina/administración & dosificación , Desamino Arginina Vasopresina/sangre , Riñón/metabolismo , Administración Intravenosa , Adolescente , Humanos , Masculino , Concentración Osmolar
5.
Neurobiol Learn Mem ; 141: 44-52, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28341151

RESUMEN

Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.


Asunto(s)
Trastornos del Conocimiento/genética , Cognición/fisiología , Función Ejecutiva/fisiología , Histona Acetiltransferasas/genética , Esquizofrenia/genética , Alelos , Animales , Conducta Animal/fisiología , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Heterocigoto , Masculino , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Noqueados , Corteza Prefrontal/fisiopatología , Esquizofrenia/fisiopatología
6.
BMC Genomics ; 16: 548, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26208977

RESUMEN

BACKGROUND: Massively parallel cDNA sequencing (RNA-seq) experiments are gradually superseding microarrays in quantitative gene expression profiling. However, many biologists are uncertain about the choice of differentially expressed gene (DEG) analysis methods and the validity of cost-saving sample pooling strategies for their RNA-seq experiments. Hence, we performed experimental validation of DEGs identified by Cuffdiff2, edgeR, DESeq2 and Two-stage Poisson Model (TSPM) in a RNA-seq experiment involving mice amygdalae micro-punches, using high-throughput qPCR on independent biological replicate samples. Moreover, we sequenced RNA-pools and compared their results with sequencing corresponding individual RNA samples. RESULTS: False-positivity rate of Cuffdiff2 and false-negativity rates of DESeq2 and TSPM were high. Among the four investigated DEG analysis methods, sensitivity and specificity of edgeR was relatively high. We documented the pooling bias and that the DEGs identified in pooled samples suffered low positive predictive values. CONCLUSIONS: Our results highlighted the need for combined use of more sensitive DEG analysis methods and high-throughput validation of identified DEGs in future RNA-seq experiments. They indicated limited utility of sample pooling strategies for RNA-seq in similar setups and supported increasing the number of biological replicate samples.


Asunto(s)
ADN Complementario/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN , Animales , Ratones , Programas Informáticos
7.
Bipolar Disord ; 17(2): 205-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25053281

RESUMEN

OBJECTIVES: Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.3) with psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS: We cross-linked Danish psychiatric and cytogenetic case registers to identify an individual with both t(9;17)(q33.2;q25.3) and BD. Fluorescent in situ hybridization was employed to map the chromosomal breakpoint regions of this proband. We accessed the Psychiatric Genomics Consortium BD (n = 16,731) and SZ (n = 21,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213 (RNF213), and regulatory-associated protein of mammalian target of rapamycin (mTOR) (RPTOR)] were found to be located within the 17q25.3 breakpoint region. NPTX1 was significantly associated with BD (p = 0.004), while ENDOV was significantly associated with SZ (p = 0.0075) after Bonferroni correction. CONCLUSIONS: Prior linkage evidence and our findings suggest NPTX1 as a novel candidate gene for BD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Bipolar/genética , Proteína C-Reactiva/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Proteínas del Tejido Nervioso/genética , Esquizofrenia/genética , Ubiquitina-Proteína Ligasas/genética , Adenosina Trifosfatasas , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 9/genética , Familia , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Polimorfismo de Nucleótido Simple , Proteína Reguladora Asociada a mTOR , Translocación Genética/genética
8.
BMC Nephrol ; 16: 217, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26714855

RESUMEN

BACKGROUND: Autosomal dominant inheritance of congenital nephrogenic diabetes insipidus (CNDI) is rare and usually caused by variations in the AQP2 gene. We have investigated the genetic and molecular background underlying symptoms of diabetes insipidus (DI) in a Swedish family with autosomal dominant inheritance of the condition. METHODS: The proband and her father were subjected to water deprivation testing and direct DNA sequencing of the coding regions of the AQP2 and AVP genes. Madin-Darby canine kidney (MDCK) cells stably expressing AQP2 variant proteins were generated by lentiviral gene delivery. Localization of AQP2 variant proteins in the cells under stimulated and unstimulated conditions was analyzed by means of immunostaining and confocal laser scanning microscopy. Intracellular trafficking of AQP2 variant proteins was studied using transient expression of mutant dynamin2-K44A-GFP protein and AQP2 variant protein phosphorylation levels were assessed by Western blotting analysis. RESULTS: Clinical and genetic data suggest that the proband and her father suffer from partial nephrogenic DI due to a variation (g.4807C > T) in the AQP2 gene. The variation results in substitution of arginine-254 to tryptophan (p.R254W) in AQP2. Analysis of MDCK cells stably expressing AQP2 variant proteins revealed disabled phosphorylation, impaired trafficking and intracellular accumulation of AQP2-R254W protein. Notably, blocking of the endocytic pathway demonstrated impairment of AQP2-R254W to reach the cell surface. CONCLUSIONS: Partial CNDI in the Swedish family is caused by an AQP2 variation that seems to disable the encoded AQP2-R254W protein to reach the subapical vesicle population as well as impairing its phosphorylation at S256. The AQP2-R254W protein is thus unable to reach the plasma membrane to facilitate AVP mediated urine concentration.


Asunto(s)
Acuaporina 2/genética , Diabetes Insípida Nefrogénica/genética , Acuaporina 2/fisiología , Femenino , Humanos , Lactante , Masculino , Mutación , Linaje , Transporte de Proteínas
9.
Neurobiol Dis ; 54: 12-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23466696

RESUMEN

Cells rely on efficient protein quality control systems (PQCs) to maintain proper activity of mitochondrial proteins. As part of this system, the mitochondrial chaperone Hsp60 assists folding of matrix proteins and it is an essential protein in all organisms. Mutations in Hspd1, the gene encoding Hsp60, are associated with two human inherited diseases of the nervous system, a dominantly inherited form of spastic paraplegia (SPG13) and an autosomal recessively inherited white matter disorder termed MitCHAP60 disease. Although the connection between mitochondrial failure and neurodegeneration is well known in many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, and hereditary spastic paraplegia, the molecular basis of the neurodegeneration associated with these diseases is still ill-defined. Here, we investigate mice heterozygous for a knockout allele of the Hspd1 gene encoding Hsp60. Our results demonstrate that Hspd1 haploinsufficiency is sufficient to cause a late onset and slowly progressive deficit in motor functions in mice. We furthermore emphasize the crucial role of the Hsp60 chaperone in mitochondrial function by showing that the motor phenotype is associated with morphological changes of mitochondria, deficient ATP synthesis, and in particular, a defect in the assembly of the respiratory chain complex III in neuronal tissues. In the current study, we propose that our heterozygous Hsp60 mouse model is a valuable model system for the investigation of the link between mitochondrial dysfunction and neurodegeneration.


Asunto(s)
Chaperonina 60/deficiencia , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Enfermedad de la Neurona Motora/fisiopatología , Animales , Western Blotting , Chaperonina 60/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Enfermedad de la Neurona Motora/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Pituitary ; 16(2): 152-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22695750

RESUMEN

Familial neurohypophyseal diabetes insipidus (FNDI) is mostly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria typically in early childhood. To date, 69 different variations in the AVP gene encoding the AVP prohormone have been identified in autosomal dominant FNDI (adFNDI). In this study we present a family of seven generations, in which a novel variation in the AVP gene seems to cause adFNDI. Clinical assessment by 24 h urine collection, water deprivation test, desmopressin (dDAVP) challenge, and magnetic resonance imaging (MRI) of the posterior pituitary are presented. The diagnosis of adFNDI was confirmed by direct DNA sequence analysis of the AVP gene. Inheritance pattern and clinical history clearly pointed towards adFNDI. Inability of concentrating urine upon dehydration was demonstrated by a water deprivation test, and neurohypophyseal diabetes insipidus was strongly suspected after dDAVP administration, during which renal concentration ability quadrupled. MRI revealed a very weak pituitary "bright spot" in each of six subjects and a further reduction in the size of the neurohypophysis in a 7-year follow-up MRI scan in one subject. DNA sequence analysis revealed heterozygousity for a novel g.1785T > C gene variation predicting a p.Leu63Pro substitution in four affected subjects. Genetic testing in the diagnostic evaluation of families in which diabetes insipidus segregates is highly recommended in that interpretation of clinical assessments can be difficult. Furthermore, presymptomatic diagnosis can ease the parental concern of the carrier status of their offspring, and also avoid unnecessary surveillance of those being unaffected.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Neurofisinas/genética , Precursores de Proteínas/genética , Vasopresinas/genética , Femenino , Heterocigoto , Humanos , Italia , Imagen por Resonancia Magnética , Masculino , Linaje , Análisis de Secuencia de ADN
11.
Clin Endocrinol (Oxf) ; 77(4): 586-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22524462

RESUMEN

OBJECTIVE: Familial neurohypophyseal diabetes insipidus (FNDI) is mainly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria in early childhood. In this study, we aimed to determine the molecular genetics and clinical characteristics of a large Swedish-Norwegian family presenting with very late-onset autosomal dominant FNDI. PATIENTS: Six probands with a history of developing polyuria and polydipsia during adolescence were studied. MEASUREMENTS: Information on family demography was collected by personal interview with family members. The genetic cause of FNDI was identified by DNA sequencing analysis of the coding regions of the AVP gene. The clinical characteristics were determined by the measurement of basal urine production and osmolality as well as by measurements of concurrent levels of plasma AVP, plasma osmolality, and urine osmolality during fluid deprivation and bolus injection of DDAVP. The integrity of the neurohypophysis was evaluated by magnetic resonance imaging. RESULTS: The mean age of encountering the first clinical symptoms in the family was 14·8 years (range 3-30 years) (n = 17). All six affected subjects investigated were heterozygous for a novel mutation in the AVP gene (g.1848C>T) predicting a p.Pro84Leu substitution in the AVP precursor protein. We found partial deficiency in evoked AVP secretion during fluid deprivation in one subject and complete deficiency in another. The pituitary bright spot was absent in all six affected subjects studied. CONCLUSION: A novel mutation in the AVP gene predicted to cause a neurophysin II dimerization defect is causing surprisingly late onset of FNDI in a large, six generation, Swedish-Norwegian family. The mutation is associated with both complete and partial deficiency in evoked AVP secretion during fluid deprivation in patients who have suffered from FNDI for decades.


Asunto(s)
Arginina Vasopresina/genética , Diabetes Insípida Neurogénica/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación , Análisis de Secuencia de ADN , Adulto Joven
12.
Acta Paediatr ; 101(11): e519-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22931312

RESUMEN

UNLABELLED: Isolated aldosterone synthase deficiency can be the source of life-threatening salt wasting and failure to thrive in infancy. We studied an infant with failure to thrive and persistent hyponatremia despite oral sodium supplementation. Initial analyses revealed highly elevated plasma renin but normal values of plasma aldosterone. The biochemical diagnosis of corticosterone methyl oxidase deficiency type II was established by multisteroid analysis, revealing a pathognomonic pattern with a highly elevated ratio of 18-OH-corticosterone to aldosterone. This reflects an enzymatic defect in the aldosterone synthase that is responsible for the terminal steps in the aldosterone biosynthesis. Molecular genetic analysis supported the diagnosis revealing homozygosity for a pathogenic c.554C>T (p.T185I) variation in exon 3 of the CYP11B2 gene encoding aldosterone synthase. Homozygosity for two other polymorphic variations c.504C>T (p.F168F) and c.518A>G (p.K173R) were identified as well. Treatment with fludrocortisone resulted in catch-up growth. Discontinuation of treatment at the age of 9 years was later possible without any clinical or biochemical deterioration. CONCLUSIONS: Isolated deficiency in aldosterone biosynthesis should be considered in neonates and infants with failure to thrive and salt wasting. Normal levels of plasma aldosterone compared with highly elevated levels of plasma renin indicate an impaired aldosterone biosynthesis and suggest the disorder. Recognition of its existence is important as fludrocortisone replacement therapy effectively normalizes sodium balance and growth.


Asunto(s)
Citocromo P-450 CYP11B2/genética , Homocigoto , Hipoaldosteronismo/genética , Mutación Puntual , Citocromo P-450 CYP11B2/deficiencia , Femenino , Marcadores Genéticos , Humanos , Hipoaldosteronismo/diagnóstico , Lactante
13.
Lancet Child Adolesc Health ; 5(3): 201-209, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33453761

RESUMEN

BACKGROUND: Nocturnal enuresis (bedwetting) is a common disorder affecting 10-16% of 7-year-old children globally. Nocturnal enuresis is highly heritable, but its genetic determinants remain unknown. We aimed to identify genetic variants associated with nocturnal enuresis and explore its genetic architecture and underlying biology. METHODS: We did a genome-wide association study (GWAS) of nocturnal enuresis. Nocturnal enuresis cases were identified in iPSYCH2012, a large Danish population-based case cohort established to investigate mental disorders, on the basis of 10th revision of the International Statistical Classification of Diseases (ICD-10) diagnoses and redeemed desmopressin prescriptions in Danish registers. The GWAS was done in a genetically homogeneous sample of unrelated individuals using logistic regression with relevant covariates. All genome-wide significant variants were analysed for their association with nocturnal enuresis in an independent Icelandic sample from deCODE genetics. Standardised polygenic risk scores for attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder were constructed from summary statistics of large GWASs and analysed for association with nocturnal enuresis. FINDINGS: The GWAS included 3882 nocturnal enuresis cases and 31 073 controls. We found two loci at chromosome 6 and chromosome 13 significantly associated with nocturnal enuresis. Six genetic variants at the two loci (five variants at chromosome 6q16.2 and one variant at chromosome 13q22.3) surpassed the threshold for genome-wide significance (p<5 × 10-8). There were two lead variants: rs9376454 (chromosome 6q16.2), with an odds ratio (OR) of 1·199 (95% CI 1·135-1·267; p=9·91 × 10-11), and rs60721117 (chromosome 13q22.3), with an OR of 1·149 (1·095-1·205; p=1·21 × 10-8). All associated variants in the chromosome 6 locus were replicated (p<8 × 10-3) in the independent Icelandic cohort of 5475 nocturnal enuresis cases and 303 996 controls, whereas the associated variant in the chromosome 13 locus showed nominal significant association (p=0·031). The percentage of nocturnal enuresis phenotypic variance explained by the common genetic variants was 23·9-30·4%. Polygenic risk for ADHD was associated with nocturnal enuresis (OR 1·06, 95% CI, 1·01-1·10; p=0·011). Among the potential nocturnal enuresis risk genes mapped, PRDM13 and EDNRB have biological functions associated with known pathophysiological mechanisms in nocturnal enuresis, and SIM1 regulates the formation of the hypothalamic neuroendocrine lineage that produces arginine vasopressin, a well known nocturnal enuresis drug target. INTERPRETATION: This study shows that common genetic variants contribute considerably to nocturnal enuresis, and it identifies potential nocturnal enuresis risk genes with roles in sleep, urine production, and bladder function. Given that available treatments target these mechanisms, any of the identified genes and their functional gene networks are potential drug targets. FUNDING: The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Stanley Foundation.


Asunto(s)
Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Enuresis Nocturna/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Niño , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 6/genética , Desamino Arginina Vasopresina/uso terapéutico , Femenino , Variación Genética/genética , Humanos , Masculino , Enuresis Nocturna/tratamiento farmacológico , Fenotipo
14.
Scand J Urol Nephrol ; 44(5): 324-30, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20459358

RESUMEN

OBJECTIVE: To establish the clinical phenotype and genetic background in a family with diabetes insipidus. MATERIAL AND METHODS: The subjects were a sister and brother, aged 34 and 27 years, respectively, with a history of polyuria since infancy. Clinical testing confirmed a diagnosis of congenital nephrogenic diabetes insipidus (CNDI) in both. Samples of purified genomic DNA were analysed. RESULTS: The sequence of the entire coding region of the AQP2 gene as well as the AVPR2 gene was determined. Sequence analysis revealed no variations in the AQP2 gene. A missense variation in exon 2 of the AVPR2 gene (g.685G>A), predicting a p.Asp85Asn substitution, was identified in the X-chromosome of the affected male and one allele in the sister and the asymptomatic mother. The p.Asp85Asn variation in AVPR2 is known to cause CNDI, and has previously been described as inducing a partial phenotype treatable with dDAVP. However, in this family dDAVP had no influence on urine osmolality, whereas combination therapy with indomethacin and hydrochlorothiazide increased urine osmolality to 299 mosm/l in the proband. A skewed X-inactivation pattern (93%) occurring in the normal X allele was recognized in the sister. CONCLUSIONS: This study demonstrates the effect of skewed X-chromosome inactivation associated with X-linked CNDI. Polydipsia in early childhood could be due to X-linked CNDI despite affecting both genders. The significant heterogeneity in the clinical phenotype in CNDI carries a risk of diagnostic misinterpretation and emphasizes the need for genetic characterization. Treatment combining indomethacin and hydrochlorothiazide results in a marked response on both urine output and urine osmolality.


Asunto(s)
Silenciador del Gen , Genes Ligados a X/genética , Adulto , Acuaporina 2/genética , Diabetes Insípida/genética , Diabetes Insípida Nefrogénica , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Técnicas de Amplificación de Ácido Nucleico , Linaje , Mapeo Restrictivo
15.
Transl Psychiatry ; 10(1): 239, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681022

RESUMEN

The schizophrenia-associated gene, BRD1, encodes an epigenetic regulator in which chromatin interactome is enriched with genes implicated in mental health. Alterations in histone modifications and epigenetic regulation contribute to brain transcriptomic changes in affective disorders and preclinical data supports a role for BRD1 in psychopathology. However, the implication of BRD1 on affective pathology remains poorly understood. In this study, we assess affective behaviors and associated neurobiology in Brd1+/- mice along with their responses to Fluoxetine and Imipramine. This involves behavioral, neurostructural, and neurochemical characterizations along with regional cerebral gene expression profiling combined with integrative functional genomic analyses. We report behavioral changes in female Brd1+/- mice with translational value to depressive symptomatology that can be alleviated by the administration of antidepressant medications. Behavioral changes are accompanied by altered brain morphometry and imbalances in monoaminergic systems. In accordance, gene expression changes across brain tissues reveal altered neurotransmitter signaling and cluster in functional pathways associated with depression including 'Adrenergic-, GPCR-, cAMP-, and CREB/CREM-signaling'. Integrative gene expression analysis specifically links changes in amygdaloid intracellular signaling activity to the behavioral treatment response in Brd1+/- mice. Collectively, our study highlights the importance of BRD1 as a modulator of affective pathology and adds to our understanding of the molecular mechanisms underlying affective disorders and their treatment response.


Asunto(s)
Histona Acetiltransferasas , Esquizofrenia , Animales , Depresión/genética , Epigénesis Genética , Femenino , Expresión Génica , Ratones , Esquizofrenia/genética
16.
Am J Physiol Renal Physiol ; 297(6): F1518-25, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812297

RESUMEN

X-linked congenital nephrogenic diabetes insipidus (CNDI) is characterized by a defective renal response to the antidiuretic hormone (AVP) due to variations in the arginine vasopressin receptor 2 (AVPR2) gene. In a unique group of patients, the renal insensitivity to the effects of AVP is incomplete resulting in a partial phenotype. To investigate the molecular defects, two previously published variations in the AVPR2 gene, known to cause a partial CNDI phenotype, were expressed in transiently transfected human embryonic kidney cells. One variation (p.Arg104Cys) is located in the first extracellular loop and the other variation (p.Ser329Arg) is located in the intracellular COOH terminal of the receptor protein. Western blotting showed almost equal amounts of WT-V2R and Arg104Cys-V2R protein at steady state, whereas the level of Ser329Arg-V2R protein was lower. Confocal microscopy established that WT-V2R and Arg104Cys-V2R are localized on the cellular surface while the Ser329Arg-V2R primarily accumulates within the endoplasmic reticulum resulting in reduced surface expression. Ligand binding analysis demonstrated that the B(max) for cells expressing Arg104Cys-V2R and Ser329Arg-V2R were 14.8- and 2.5-fold lower than B(max) for WT-V2R, respectively. AVP affinity (1/K(d)) for WT-V2R and the Ser329Arg-V2R was similar while 1/K(d) for Arg104Cys-V2R was increased. cAMP assay revealed that cells expressing p.Arg104Cys-V2R or p.Ser329Arg-V2R produced 1.7- and 6.8-fold lower amounts of cAMP compared with WT-V2R, respectively. In conclusion, ligand binding and signal transduction capability are dependent on localization of the amino acid variation. Striking divergences at the level of receptor functionality may thus underlie similar clinical phenotypes in CNDI.


Asunto(s)
Diabetes Insípida Nefrogénica/metabolismo , Variación Genética , Riñón/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Arginina , Western Blotting , Línea Celular , Cromosomas Humanos X , Cisteína , ADN Complementario , Diabetes Insípida Nefrogénica/genética , Ligamiento Genético , Humanos , Microscopía Confocal , Fenotipo , Biosíntesis de Proteínas , Serina , Distribución Tisular , Transcripción Genética , Transfección
17.
Proteome Sci ; 7: 20, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19476632

RESUMEN

BACKGROUND: Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. RESULTS: When fibroblast cultures were exposed to mild metabolic stress - by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. CONCLUSION: The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

18.
Nat Genet ; 51(3): 431-444, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30804558

RESUMEN

Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Dinamarca , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Herencia Multifactorial/genética , Fenotipo , Factores de Riesgo
19.
Clin Endocrinol (Oxf) ; 68(3): 395-403, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17941907

RESUMEN

OBJECTIVE: To identify the molecular basis and clinical characteristics of X-linked congenital nephrogenic diabetes insipidus (CNDI) presenting with an unusual phenotype characterized by partial resistance to AVP. SUBJECTS: The proband was admitted at the age of 4 years with a history of polydipsia and polyuria since infancy. Initial clinical testing confirmed a diagnosis of diabetes insipidus (DI). Urine osmolarity rose during fluid deprivation and after 20 microg of intranasal desmopressin [1-deamino-8-D-arginine-vasopressin (dDAVP)]. A similar DI phenotype was found in his brother. METHODS: The coding regions of the AVP gene and the AVP receptor 2 (AVPR2) genes were sequenced in two affected and three unaffected family members. Clinical studies included a fluid deprivation test, intranasal dDAVP challenge, infusion of graded doses of dDAVP and AVP, and measurements of 24-h urine output before and at the end of a 7-day therapeutic trial of intranasal dDAVP. RESULTS: A novel missense mutation (1454C > A) in exon 3 of the AVPR2 gene predicting a Ser329Arg substitution was identified in the X-chromosome of the two affected brothers and in one of the X-chromosomes in the mother. The AVPR2 gene was normal in two unaffected siblings. Under basal conditions, the 24-h urine volumes of the two affected boys were 5.5 l (229 ml/kg) and 3.5 l (192 ml/kg), the urine osmolalities were 78 and 90 mosm/kg, and plasma AVP 13.5 and 19.0 pg/ml. Urine osmolalities increased to 573 and 720 mosm/kg while plasma AVP levels were practically unchanged, 13.6 and 8.8 pg/ml, during fluid deprivation. Infusion of AVP resulted in urine osmolalities of 523 and 623 mosm/kg at plasma AVP levels of 58 and 42 pg/ml. Infusion of dDAVP had a similar effect, while treatment with standard doses of intranasal dDAVP had no effect on urine output. DISCUSSION: The affected members of this Belgian kindred have CNDI with partial resistance to AVP caused by a mutation in the AVPR2 gene that differs from any of the six mutations reported previously to produce this phenotype. Because the resistance to AVP is partial, this form of CNDI can be difficult to distinguish by indirect diagnostic tests from partial pituitary and dipsogenic DI.


Asunto(s)
Diabetes Insípida Nefrogénica/genética , Mutación Missense , Receptores de Vasopresinas/genética , Adulto , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Neurofisinas/genética , Linaje , Precursores de Proteínas/genética , Vasopresinas/genética
20.
Mol Neurobiol ; 55(1): 567-582, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27975171

RESUMEN

A healthy lifestyle, including regular physical exercise, is generally believed to improve cognitive function and enhance neurogenesis. Such physical exercise-induced effects are associated with increased brain expression of neurotrophic and growth factors. In the present study, we investigated Bdnf, Igf-1, Fgf-2, Egf, and VegfA messenger RNA (mRNA) expression levels in the male rat hippocampus and frontal cortex after 2 weeks of voluntary physical exercise. Whereas the expression of Fgf-2 was upregulated in the hippocampus and prefrontal cortex by physical exercise, the expression levels of Bdnf transcript 1, Bdnf transcript 4, Igf-1, and VegfA were upregulated only in the hippocampus. We focused our subsequent analyses on the VegfA gene, which encodes vascular endothelial growth factor, a signaling molecule important for angiogenesis, vasculogenesis, and neurogenesis. To study the epigenetic mechanisms involved in the physical exercise-mediated induction of VegfA expression, we used oxidative and non-oxidative bisulfite pyrosequencing to analyze VegfA promoter DNA methylation and DNA hydroxymethylation. We observed discrete DNA hypomethylation at specific CpG sites in rats that engaged in physical exercise relative to sedentary rats. This is exemplified by a CpG site located within a VegfA promoter Sp1/Sp3 transcription factor recognition element. DNA hydroxymethylation was present at the VegfA promoter, but no differences in DNA hydroxymethylation were observed in rats that engaged in physical exercise relative to sedentary rats. Moreover, we observed increased Tet1 and decreased Dnmt3b mRNA expression in the hippocampi of rats that engaged in physical exercise. The presented results substantiate the involvement of epigenetics as a mediator of the beneficial effects of physical exercise and point to the importance of analyzing factors beyond Bdnf to delineate the mechanisms behind the functional impacts of physical exercise in mediating benefits to the brain.


Asunto(s)
Epigénesis Genética , Hipocampo/metabolismo , Condicionamiento Físico Animal , Factor A de Crecimiento Endotelial Vascular/genética , Acetilación , Animales , Islas de CpG/genética , Metilación de ADN/genética , Histonas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisina/metabolismo , Masculino , Factores de Crecimiento Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Elementos de Respuesta/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA