RESUMEN
Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.
RESUMEN
The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth.
RESUMEN
The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.
Asunto(s)
Polvo/análisis , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/química , Marte , Suelo/análisis , Bromo/análisis , Compuestos de Hierro/análisis , Compuestos de Magnesio/análisis , Minerales/análisis , Minerales/química , Níquel/análisis , Silicatos/análisis , Silicatos/química , Espectrofotometría Infrarroja , Espectroscopía de Mossbauer , Agua/análisis , Agua/químicaRESUMEN
The Emirates Mars Mission Emirates Mars Infrared Spectrometer (EMIRS) will provide remote measurements of the martian surface and lower atmosphere in order to better characterize the geographic and diurnal variability of key constituents (water ice, water vapor, and dust) along with temperature profiles on sub-seasonal timescales. EMIRS is a FTIR spectrometer covering the range from 6.0-100+ µm (1666-100 cm-1) with a spectral sampling as high as 5 cm-1 and a 5.4-mrad IFOV and a 32.5×32.5 mrad FOV. The EMIRS optical path includes a flat 45° pointing mirror to enable one degree of freedom and has a +/- 60° clear aperture around the nadir position which is fed to a 17.78-cm diameter Cassegrain telescope. The collected light is then fed to a flat-plate based Michelson moving mirror mounted on a dual linear voice-coil motor assembly. An array of deuterated L-alanine doped triglycine sulfate (DLaTGS) pyroelectric detectors are used to sample the interferogram every 2 or 4 seconds (depending on the spectral sampling selected). A single 0.846 µm laser diode is used in a metrology interferometer to provide interferometer positional control, sampled at 40 kHz (controlled at 5 kHz) and infrared signal sampled at 625 Hz. The EMIRS beamsplitter is a 60-mm diameter, 1-mm thick 1-arcsecond wedged chemical vapor deposited diamond with an antireflection microstructure to minimize first surface reflection. EMIRS relies on an instrumented internal v-groove blackbody target for a full-aperture radiometric calibration. The radiometric precision of a single spectrum (in 5 cm-1 mode) is <3.0×10-8 W cm-2 sr-1/cm-1 between 300 and 1350 cm-1 over instrument operational temperatures (<â¼0.5 K NE Δ T @ 250 K). The absolute integrated radiance error is < 2% for scene temperatures ranging from 200-340 K. The overall EMIRS envelope size is 52.9×37.5×34.6 cm and the mass is 14.72 kg including the interface adapter plate. The average operational power consumption is 22.2 W, and the standby power consumption is 18.6 W with a 5.7 W thermostatically limited, always-on operational heater. EMIRS was developed by Arizona State University and Northern Arizona University in collaboration with the Mohammed bin Rashid Space Centre with Arizona Space Technologies developing the electronics. EMIRS was integrated, tested and radiometrically calibrated at Arizona State University, Tempe, AZ.
RESUMEN
Chloride-bearing deposits and phyllosilicates-bearing units are widely distributed in the southern highlands of Mars, but these phases are rarely found together in fluviolacustrine environments. The study of the coexistence of these minerals can provide important insights into geochemistry, water activity, and ultimately the climate and habitability of early Mars. Here we use high-resolution compositional and morphological orbiter data to identify and characterize the context of diverse minerals in a Noachian fluviolacustrine environment west of Knobel crater (6.7°S, 226.8°W). The chlorides in this region are likely formed through the evaporation of brines in a closed topographic basin. The formation age of chlorides is older than 3.7 Ga, based on stratigraphic relationships identified and previously obtained crater retention ages. The timing of the alteration of basaltic materials to iron-magnesium smectites in relation to the chloride formation in this location is enigmatic and is unable to be resolved with currently available remote sensing data. Importantly, we find that this close relationship between these key minerals revealed by the currently available data details a complex and intimate history of aqueous activity in the region. Of critical importance are the evaporitic deposits as analogous terrestrial deposits have been shown to preserve ancient biosignatures and possibly even sustain microbial communities for hundreds of millions of years. These salts could have protected organic matter from ultraviolet radiation, or even allow modern habitable microenvironments in the shallow subsurface through periodic deliquescence. The high astrobiology potential of this site makes it a good candidate for future landed and sample return missions (e.g., the Chinese 2020 Mars mission).
Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Sedimentos Geológicos/química , Marte , Cloruros/análisis , Rayos InfrarrojosRESUMEN
Athabasca Valles is a near-equatorial martian outflow channel that contains many well-preserved features whose formation and composition have been a point of contention. Large plates of terrain that have clearly fractured and drifted may have once been ice rafts or the rocky solidification crust of a large lava flow. We have identified 269 spiral coils ranging from 5 to 30 meters wide on the polygonally patterned interplate terrain that are morphologically consistent with terrestrial lava coils that form in zones of flow shear. This patterned terrain also exhibits signs of fracture and drift, indicating that it is platelike as well. The coils in the Athabasca region are inconsistent with ice rheology, and the plates, spirals, and polygons are interpreted to be of volcanic origin.
RESUMEN
The observation of gullies on Mars indicates the presence of liquid water near the surface in recent times, which is difficult to reconcile with the current cold climate. Gullies have been proposed to form through surface runoff from subsurface aquifers or through melting of near-surface ice under warmer conditions. But these gullies are observed to occur preferentially in cold mid-latitudes, where the presence of liquid water is less likely, and on isolated surfaces where groundwater seepage would not be expected, making both potential explanations unsatisfactory. Here I show that gullies can form by the melting of water-rich snow that has been transported from the poles to mid-latitudes during periods of high obliquity within the past 10(5) to 10(6) years (refs 5, 6). Melting within this snow can generate sufficient water to erode gullies in about 5,000 years. My proposed model for gully formation is consistent with the age and location of the gullies, and it explains the occurrence of liquid water in the cold mid-latitudes as well as on isolated surfaces. Remnants of the snowpacks are still present on mid-latitude, pole-facing slopes, and the recent or current occurrence of liquid water within them provides a potential abode for life.
RESUMEN
Thermal infrared spectra of the martian surface indicate the presence of small concentrations (approximately 2 to 5 weight %) of carbonates, specifically dominated by magnesite (MgCO3). The carbonates are widely distributed in the martian dust, and there is no indication of a concentrated source. The presence of small concentrations of carbonate minerals in the surface dust and in martian meteorites can sequester several bars of atmospheric carbon dioxide and may have been an important sink for a thicker carbon dioxide atmosphere in the martian past.
Asunto(s)
Carbonatos/análisis , Magnesio/análisis , Marte , Minerales/análisis , Atmósfera , Presión Atmosférica , Dióxido de Carbono , Medio Ambiente Extraterrestre , Sedimentos Geológicos , Meteoroides , Tamaño de la Partícula , Silicatos/análisis , Espectrofotometría Infrarroja , AguaRESUMEN
We have detected a 30,000-square-kilometer area rich in olivine in the Nili Fossae region of Mars. Nili Fossae has been interpreted as a complex of grabens and fractures related to the formation of the Isidis impact basin. We propose that post-impact faulting of this area has exposed subsurface layers rich in olivine. Linear mixture analysis of Thermal Emission Spectrometer spectra shows surface exposures of 30% olivine, where the composition of the olivine ranges from Fo30 to Fo70.
RESUMEN
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
Asunto(s)
Marte , Algoritmos , Atmósfera , Dióxido de Carbono , Medio Ambiente Extraterrestre , Estaciones del Año , Análisis Espectral , Temperatura , AguaRESUMEN
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.