Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 21(5): 1394-409, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19435937

RESUMEN

The gynoecium is the most complex floral organ, designed to protect the ovules and ensure their fertilization. Correct patterning and tissue specification in the developing gynoecium involves the concerted action of a host of genetic factors. In addition, apical-basal patterning into different domains, stigma and style, ovary and gynophore, appears to depend on the establishment and maintenance of asymmetric auxin distribution, with an auxin maximum at the apex. Here, we show that a small subfamily of the B3 transcription factor superfamily, the NGATHA (NGA) genes, act redundantly to specify style development in a dosage-dependent manner. Characterization of the NGA gene family is based on an analysis of the activation-tagged mutant named tower-of-pisa1 (top1), which was found to overexpress NGA3. Quadruple nga mutants completely lack style and stigma development. This mutant phenotype is likely caused by a failure to activate two auxin biosynthetic enzymes, YUCCA2 and YUCCA4, in the apical gynoecium domain. The NGA mutant phenotypes are similar to those caused by multiple combinations of mutations in STYLISH1 (STY1) and additional members of its family. NGA3/TOP1 and STY1 share almost identical patterns of expression, but they do not appear to regulate each other at the transcriptional level. Strong synergistic phenotypes are observed when nga3/top1 and sty1 mutants are combined. Furthermore, constitutive expression of both NGA3/TOP1 and STY1 induces the conversion of the ovary into style tissue. Taken together, these data suggest that the NGA and STY factors act cooperatively to promote style specification, in part by directing YUCCA-mediated auxin synthesis in the apical gynoecium domain.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Ácidos Indolacéticos/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Transducción de Señal/genética
2.
Proc Natl Acad Sci U S A ; 103(16): 6404-9, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16601102

RESUMEN

Activity of the serine-threonine protein kinase PINOID (PID) has been implicated in the asymmetrical localization of the membrane-associated PINFORMED (PIN) family of auxin transport facilitators. However, the means by which PID regulates PIN protein distribution is unknown. We have used recombinant PID protein to dissect the regulation of PID activity in vitro. We demonstrate that intramolecular PID autophosphorylation is required for the ability of PID to phosphorylate an exogenous substrate. PID-like mammalian AGC kinases act in a phosphorylation cascade initiated by the phospholipid-associated kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1), which binds to the C-terminal hydrophobic PDK1-interacting fragment (PIF) domain found in PDK1 substrates. We find that Arabidopsis PDK1 interacts with PID, and that transphosphorylation by PDK1 increases PID autophosphorylation. We show that a PID activation loop serine is required for PDK1-dependent PID phosphorylation. This activation is rapid and requires the PIF domain. Cell extracts from flowers and seedling shoots dramatically increase PID phosphorylation in a tissue-specific manner. A PID protein variant in which the PIF domain was mutated failed to be activated by the seedling shoot extracts. PID immunoprecipitated from Arabidopsis cells in which PDK1 expression was inhibited by RNAi showed a dramatic reduction in transphosphorylation of myelin basic protein substrate. These results indicate that AtPDK1 is a potent enhancer of PID activity and provide evidence that phospholipid signaling may play a role in the signaling processes controlling polar auxin transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Secuencia de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Calcio/farmacología , Extractos Celulares/farmacología , Activación Enzimática , Inmunoprecipitación , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína/genética , Transducción de Señal , Activación Transcripcional
3.
J Biol Chem ; 281(46): 35520-30, 2006 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16973627

RESUMEN

The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.


Asunto(s)
Arabidopsis/enzimología , Proteínas Quinasas/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Secuencia de Aminoácidos , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas
4.
J Biol Chem ; 279(31): 32474-82, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15159384

RESUMEN

The c-type cytochromes are defined by the occurrence of heme covalently linked to the polypeptide via thioether bonds between heme and the cysteine sulfhydryls in the CXXCH motif of apocytochrome. Maintenance of apocytochrome sulfhydryls in a reduced state is a prerequisite for covalent ligation of heme to the CXXCH motif. In bacteria, a thiol disulfide transporter and a thioredoxin are two components in a thio-reduction pathway involved in c-type cytochrome assembly. We have identified in photosynthetic eukaryotes nucleus-encoded homologs of a prokaryotic thiol disulfide transporter, CcdA, which all display an N-terminal extension with respect to their bacterial counterparts. The extension of Arabidopsis CCDA functions as a targeting sequence, suggesting a plastid site of action for CCDA in eukaryotes. Using PhoA and LacZ as topological reporters, we established that Arabidopsis CCDA is a polytopic protein with within-membrane strictly conserved cysteine residues. Insertional mutants in the Arabidopsis CCDA gene were identified, and loss-of-function alleles were shown to impair photosynthesis because of a defect in cytochrome b(6)f accumulation, which we attribute to a block in the maturation of holocytochrome f, whose heme binding domain resides in the thylakoid lumen. We postulate that plastid cytochrome c maturation requires CCDA, thioredoxin HCF164, and other molecules in a membrane-associated trans-thylakoid thiol-reducing pathway.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Bacterianas/química , Cloroplastos/metabolismo , Complejo de Citocromo b6f/metabolismo , Proteínas de la Membrana/química , Fosfatasa Alcalina , Secuencias de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quinasas Ciclina-Dependientes/química , Citocromos/química , Citocromos/metabolismo , Citocromos f/química , Disulfuros/química , Operón Lac , Proteínas de la Membrana/metabolismo , Modelos Genéticos , Mutación , Péptidos/química , Fotosíntesis , Plastidios/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Compuestos de Sulfhidrilo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA