Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phys Rev Lett ; 120(20): 207603, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864364

RESUMEN

The formation of polar nanoregions through solid-solution additions is known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nanoregions (PNR), understanding their real-space atomic structure and dynamics of their formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nanoregions in the Pb-free ferroelectric of Ba(Zr,Ti)O_{3}. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently below THz frequencies, which leads to increased local correlation among dipoles within PNRs. The dynamic pair distribution function technique demonstrates a unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties.

2.
Phys Rev Lett ; 120(22): 227203, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906188

RESUMEN

The temperature dependence of the excitation spectrum in NaOsO_{3} through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic x-ray scattering at the Os L_{3} edge. High-resolution (ΔE∼56 meV) measurements show that the well-defined, low-energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in NaOsO_{3} [J. G. Vale, S. Calder, C. Donnerer, D. Pincini, Y. G. Shi, Y. Tsujimoto, K. Yamaura, M. M. Sala, J. van den Brink, A. D. Christianson, and D. F. McMorrow, Phys. Rev. B 97, 184429 (2018)PRBMDO2469-995010.1103/PhysRevB.97.184429].

3.
Phys Rev Lett ; 118(20): 207202, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581789

RESUMEN

Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca_{3}LiOsO_{6} and Ba_{2}YOsO_{6}, which reveals a dramatic spitting of the t_{2g} manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d^{3}-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

4.
Phys Rev Lett ; 117(23): 235701, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982606

RESUMEN

The structural properties of LaCu_{6-x}Au_{x} are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu_{6} is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x_{c}=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x_{c}. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. The data and calculations presented here are consistent with the zero temperature termination of a continuous structural phase transition suggesting that the LaCu_{6-x}Au_{x} series hosts an elastic quantum critical point.

5.
Phys Rev Lett ; 116(25): 257204, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27391749

RESUMEN

The low energy spin excitation spectrum of the breathing pyrochlore Ba_{3}Yb_{2}Zn_{5}O_{11} has been investigated with inelastic neutron scattering. Several nearly resolution limited modes with no observable dispersion are observed at 250 mK while, at elevated temperatures, transitions between excited levels become visible. To gain deeper insight, a theoretical model of isolated Yb^{3+} tetrahedra parametrized by four anisotropic exchange constants is constructed. The model reproduces the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. The fitted exchange parameters reveal a Heisenberg antiferromagnet with a very large Dzyaloshinskii-Moriya interaction. Using this model, we predict the appearance of an unusual octupolar paramagnet at low temperatures and speculate on the development of intertetrahedron correlations.

6.
Phys Rev Lett ; 117(17): 176603, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27824456

RESUMEN

The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.

7.
Phys Rev Lett ; 112(17): 175501, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24836255

RESUMEN

The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase space for three-phonon scattering processes, combined with the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optic ferroelectric mode.


Asunto(s)
Plomo/química , Modelos Químicos , Difracción de Neutrones/métodos , Fonones , Telurio/química , Compuestos de Estaño/química , Semiconductores , Termodinámica
8.
Nature ; 456(7224): 930-2, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19092931

RESUMEN

A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

9.
Phys Rev Lett ; 110(17): 177002, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679760

RESUMEN

Inelastic neutron scattering measurements on Ba(Fe0.963Ni0.037)2As2 manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at the antiferromagnetic (AFM) wave vector Q(AFM) along the orthorhombic a axis, the resonance disperses upwards away from Q(AFM) along the b axis. In contrast to the downward dispersing resonance and hourglass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe2As2 compounds possesses a magnonlike upwards dispersion.

10.
Phys Rev Lett ; 108(25): 257209, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23004655

RESUMEN

The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder), and Peierls (localization via distortion of a periodic one-dimensional lattice) mechanisms. One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and x-ray scattering we show that the MIT in NaOsO(3) is coincident with the onset of long-range commensurate three dimensional magnetic order. While candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT.

11.
Phys Rev Lett ; 108(3): 037206, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400782

RESUMEN

We present a detailed study of magnetism in LuFe(2)O(4), combining magnetization measurements with neutron and soft x-ray diffraction. The magnetic phase diagram in the vicinity of T(N) involves a metamagnetic transition separating an antiferro- and a ferrimagnetic phase. For both phases the spin structure is refined by neutron diffraction. Observed diffuse magnetic scattering far above T(N) is explained in terms of near degeneracy of the magnetic phases.

12.
Rev Sci Instrum ; 93(6): 065109, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778024

RESUMEN

CHESS, chopper spectrometer examining small samples, is a planned direct geometry neutron chopper spectrometer designed to detect and analyze weak signals intrinsic to small cross sections (e.g., small mass, small magnetic moments, or neutron absorbing materials) in powders, liquids, and crystals. CHESS is optimized to enable transformative investigations of quantum materials, spin liquids, thermoelectrics, battery materials, and liquids. The broad dynamic range of the instrument is also well suited to study relaxation processes and excitations in soft and biological matter. The 15 Hz repetition rate of the Second Target Station at the Spallation Neutron Source enables the use of multiple incident energies within a single source pulse, greatly expanding the information gained in a single measurement. Furthermore, the high flux grants an enhanced capability for polarization analysis. This enables the separation of nuclear from magnetic scattering or coherent from incoherent scattering in hydrogenous materials over a large range of energy and momentum transfer. This paper presents optimizations and technical solutions to address the key requirements envisioned in the science case and the anticipated uses of this instrument.

13.
Nat Commun ; 13(1): 6129, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253344

RESUMEN

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

14.
Phys Rev Lett ; 106(5): 057004, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405424

RESUMEN

We use neutron scattering to show that spin waves in the iron chalcogenide Fe(1.05)Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe(2)As(2). By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

15.
Nat Commun ; 12(1): 171, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420023

RESUMEN

In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron scattering measurements, we probe the spin correlations of the honeycomb lattice quantum magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the honeycomb lattice, including both transverse and longitudinal channels of the neutron response, reproduces all of the key features in the spectrum. In particular, we identify a Van Hove singularity, a clearly observable sharp feature within a continuum response. The demonstration of such a Van Hove singularity in a two-magnon continuum is important as a confirmation of broadly held notions of continua in quantum magnetism and additionally because analogous features in two-spinon continua could be used to distinguish quantum spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark material for quantum magnetism on the honeycomb lattice.

16.
Phys Rev Lett ; 104(18): 187002, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20482201

RESUMEN

We use neutron scattering to study magnetic excitations in crystals near the ideal superconducting composition of FeTe(0.5)Se(0.5). Two types of excitations are found, a resonance at (0.5,0.5,0) and incommensurate fluctuations on either side of this position. We show that the two sets of magnetic excitations behave differently with doping, with the resonance being fixed in position while the incommensurate excitations move as the doping is changed. These unusual results show that a common behavior of the low energy magnetic excitations is not necessary for pairing in these materials.

17.
Sci Rep ; 10(1): 11426, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651413

RESUMEN

Doped antiferromagnets host a vast array of physical properties and learning how to control them is one of the biggest challenges of condensed matter physics. [Formula: see text] (LSNO) is a classic example of such a material. At low temperatures holes introduced via substitution of La by Sr segregate into lines to form boundaries between magnetically ordered domains in the form of stripes. The stripes become dynamic at high temperatures, but LSNO remains insulating presumably because an interplay between magnetic correlations and electron-phonon coupling localizes charge carriers. Magnetic degrees of freedom have been extensively investigated in this system, but phonons are almost completely unexplored. We searched for electron-phonon anomalies in LSNO by inelastic neutron scattering. Giant renormalization of plane Ni-O bond-stretching modes that modulate the volume around Ni appears on entering the dynamic charge stripe phase. Other phonons are a lot less sensitive to stripe melting. Dramatic overdamping of the breathing modes indicates that dynamic stripe phase may host small polarons. We argue that this feature sets electron-phonon coupling in nickelates apart from that in cuprates where breathing phonons are not overdamped and point out remarkable similarities with the colossal magnetoresistance manganites.

18.
Sci Adv ; 5(3): eaaw4367, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30915399

RESUMEN

Gehring et al. argue that a splitting observed by us in the transverse acoustic (TA) phonon in the relaxor ferroelectric Pb[(Mg1/3Nb2/3)1-x Ti x ]O3 with x = 0.30 (PMN-30PT) is caused by a combination of inelastic-elastic multiple scattering processes called ghostons. Their argument is motivated by differences observed between their measurements made on a triple-axis spectrometer and our measurements on a time-of-flight spectrometer. We show that the differences can be explained by differences in the instrument resolution functions. We demonstrate that the multiple scattering conditions proposed by Gehring et al. do not work for our scattering geometry. We also show that, when a ghoston is present, it is too weak to detect and therefore cannot explain the splitting. Last, this phonon splitting is just one part of the argument, and the overall conclusion of the original paper is supported by other results.

19.
Nat Commun ; 10(1): 698, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741939

RESUMEN

Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin-orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga-Luttinger liquid behavior and spinon confinement-deconfinement transitions in different regions of magnetic field-temperature phase diagram.

20.
J Phys Condens Matter ; 30(45): 455801, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30256218

RESUMEN

The breathing pyrochlore lattice material Ba3Yb2Zn5O11 exists in the nearly decoupled limit, in contrast to most other well-studied breathing pyrochlore compounds. As a result, it constitutes a useful platform to benchmark theoretical calculations of exchange interactions in insulating Yb3+ magnets. Here we study Ba3Yb2Zn5O11 at low temperatures in applied magnetic fields as a further probe of the physics of this model system. Experimentally, we consider the behavior of polycrystalline samples of Ba3Yb2Zn5O11 with a combination of inelastic neutron scattering and heat capacity measurements down to 75 mK and up to fields of 10 T. Consistent with previous work, inelastic neutron scattering finds a level crossing near 3 T, but no significant dispersion of the spin excitations is detected up to the highest applied fields. Refinement of the theoretical model previously determined at zero field can reproduce much of the inelastic neutron scattering spectra and specific heat data. A notable exception is a low temperature peak in the specific heat at ∼0.1 K. This may indicate the scale of interactions between tetrahedra or may reflect undetected disorder in Ba3Yb2Zn5O11.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA