Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(5-6): 373-388, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555651

RESUMEN

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.


Asunto(s)
Mutación/genética , Sirtuinas/genética , Animales , Diferenciación Celular/genética , Cuerpos Embrioides , Células Madre Embrionarias , Muerte Fetal , Expresión Génica/genética , Humanos , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
2.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33795231

RESUMEN

All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.


Asunto(s)
Apoptosis , Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Organogénesis , Transducción de Señal , Proteínas de Dominio T Box/biosíntesis , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Dominio T Box/genética
3.
Adv Exp Med Biol ; 1441: 185-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884712

RESUMEN

The electrical impulses that coordinate the sequential, rhythmic contractions of the atria and ventricles are initiated and tightly regulated by the specialized tissues of the cardiac conduction system. In the mature heart, these impulses are generated by the pacemaker cardiomyocytes of the sinoatrial node, propagated through the atria to the atrioventricular node where they are delayed and then rapidly propagated to the atrioventricular bundle, right and left bundle branches, and finally, the peripheral ventricular conduction system. Each of these specialized components arise by complex patterning events during embryonic development. This chapter addresses the origins and transcriptional networks and signaling pathways that drive the development and maintain the function of the cardiac conduction system.


Asunto(s)
Sistema de Conducción Cardíaco , Animales , Humanos , Nodo Atrioventricular/fisiología , Nodo Atrioventricular/embriología , Regulación del Desarrollo de la Expresión Génica , Sistema de Conducción Cardíaco/fisiología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Nodo Sinoatrial/fisiología , Nodo Sinoatrial/embriología
4.
BMC Biol ; 21(1): 55, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941669

RESUMEN

BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.


Asunto(s)
Pancreatitis , Adulto , Humanos , Animales , Ratones , Enfermedad Aguda , Pancreatitis/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Páncreas/metabolismo , Organogénesis/genética
5.
Circulation ; 146(22): 1694-1711, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36317529

RESUMEN

BACKGROUND: The sinoatrial node (SAN) functions as the pacemaker of the heart, initiating rhythmic heartbeats. Despite its importance, the SAN is one of the most poorly understood cardiac entities because of its small size and complex composition and function. The Hippo signaling pathway is a molecular signaling pathway fundamental to heart development and regeneration. Although abnormalities of the Hippo pathway are associated with cardiac arrhythmias in human patients, the role of this pathway in the SAN is unknown. METHODS: We investigated key regulators of the Hippo pathway in SAN pacemaker cells by conditionally inactivating the Hippo signaling kinases Lats1 and Lats2 using the tamoxifen-inducible, cardiac conduction system-specific Cre driver Hcn4CreERT2 with Lats1 and Lats2 conditional knockout alleles. In addition, the Hippo-signaling effectors Yap and Taz were conditionally inactivated in the SAN. To determine the function of Hippo signaling in the SAN and other cardiac conduction system components, we conducted a series of physiological and molecular experiments, including telemetry ECG recording, echocardiography, Masson Trichrome staining, calcium imaging, immunostaining, RNAscope, cleavage under targets and tagmentation sequencing using antibodies against Yap1 or H3K4me3, quantitative real-time polymerase chain reaction, and Western blotting. We also performed comprehensive bioinformatics analyses of various datasets. RESULTS: We found that Lats1/2 inactivation caused severe sinus node dysfunction. Compared with the controls, Lats1/2 conditional knockout mutants exhibited dysregulated calcium handling and increased fibrosis in the SAN, indicating that Lats1/2 function through both cell-autonomous and non-cell-autonomous mechanisms. It is notable that the Lats1/2 conditional knockout phenotype was rescued by genetic deletion of Yap and Taz in the cardiac conduction system. These rescued mice had normal sinus rhythm and reduced fibrosis of the SAN, indicating that Lats1/2 function through Yap and Taz. Cleavage Under Targets and Tagmentation sequencing data showed that Yap potentially regulates genes critical for calcium homeostasis such as Ryr2 and genes encoding paracrine factors important in intercellular communication and fibrosis induction such as Tgfb1 and Tgfb3. Consistent with this, Lats1/2 conditional knockout mutants had decreased Ryr2 expression and increased Tgfb1 and Tgfb3 expression compared with control mice. CONCLUSIONS: We reveal, for the first time to our knowledge, that the canonical Hippo-Yap pathway plays a pivotal role in maintaining SAN homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Humanos , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Nodo Sinoatrial/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Serina-Treonina Quinasas/genética , Homeostasis , Fibrosis , Proliferación Celular , Proteínas Supresoras de Tumor
6.
Circulation ; 145(8): 606-619, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35113653

RESUMEN

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Asunto(s)
Anomalías Múltiples , Regulación de la Expresión Génica , Cardiopatías Congénitas , Defectos del Tabique Interatrial , Heterocigoto , Deformidades Congénitas de las Extremidades Inferiores , Mutación Missense , Linaje , Proteínas de Dominio T Box , Deformidades Congénitas de las Extremidades Superiores , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Sustitución de Aminoácidos , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Femenino , Atrios Cardíacos/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interatrial/metabolismo , Humanos , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Masculino , Ratones , Ratones Mutantes , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Deformidades Congénitas de las Extremidades Superiores/genética , Deformidades Congénitas de las Extremidades Superiores/metabolismo
8.
Circ Res ; 128(1): 115-129, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33107387

RESUMEN

RATIONALE: ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE: To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS: By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS: Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.


Asunto(s)
Factor Natriurético Atrial/genética , Elementos de Facilitación Genéticos , Hipertrofia Ventricular Izquierda/genética , Familia de Multigenes , Infarto del Miocardio/genética , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Animales , Factor Natriurético Atrial/metabolismo , Sitios de Unión , Unión Competitiva , Sistemas CRISPR-Cas , Línea Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/metabolismo , Regiones Promotoras Genéticas
9.
Proc Natl Acad Sci U S A ; 117(31): 18617-18626, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675240

RESUMEN

Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.


Asunto(s)
Nodo Atrioventricular , Proteínas de Dominio T Box , Transcriptoma/genética , Animales , Arritmias Cardíacas , Nodo Atrioventricular/metabolismo , Nodo Atrioventricular/fisiología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
10.
Circulation ; 144(3): 229-242, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33910361

RESUMEN

BACKGROUND: Genetic variants in SCN10A, encoding the neuronal voltage-gated sodium channel NaV1.8, are strongly associated with atrial fibrillation, Brugada syndrome, cardiac conduction velocities, and heart rate. The cardiac function of SCN10A has not been resolved, however, and diverging mechanisms have been proposed. Here, we investigated the cardiac expression of SCN10A and the function of a variant-sensitive intronic enhancer previously linked to the regulation of SCN5A, encoding the major essential cardiac sodium channel NaV1.5. METHODS: The expression of SCN10A was investigated in mouse and human hearts. With the use of CRISPR/Cas9 genome editing, the mouse intronic enhancer was disrupted, and mutant mice were characterized by transcriptomic and electrophysiological analyses. The association of genetic variants at SCN5A-SCN10A enhancer regions and gene expression were evaluated by genome-wide association studies single-nucleotide polymorphism mapping and expression quantitative trait loci analysis. RESULTS: We found that cardiomyocytes of the atria, sinoatrial node, and ventricular conduction system express a short transcript comprising the last 7 exons of the gene (Scn10a-short). Transcription occurs from an intronic enhancer-promoter complex, whereas full-length Scn10a transcript was undetectable in the human and mouse heart. Expression quantitative trait loci analysis revealed that the genetic variants in linkage disequilibrium with genetic variant rs6801957 in the intronic enhancer associate with SCN10A transcript levels in the heart. Genetic modification of the enhancer in the mouse genome led to reduced cardiac Scn10a-short expression in atria and ventricles, reduced cardiac sodium current in atrial cardiomyocytes, atrial conduction slowing and arrhythmia, whereas the expression of Scn5a, the presumed enhancer target gene, remained unaffected. In patch-clamp transfection experiments, expression of Scn10a-short-encoded NaV1.8-short increased NaV1.5-mediated sodium current. We propose that noncoding genetic variation modulates transcriptional regulation of Scn10a-short in cardiomyocytes that impacts NaV1.5-mediated sodium current and heart rhythm. CONCLUSIONS: Genetic variants in and around SCN10A modulate enhancer function and expression of a cardiac-specific SCN10A-short transcript. We propose that noncoding genetic variation modulates transcriptional regulation of a functional C-terminal portion of NaV1.8 in cardiomyocytes that impacts on NaV1.5 function, cardiac conduction velocities, and arrhythmia susceptibility.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Sistema de Conducción Cardíaco/fisiología , Intrones , Canal de Sodio Activado por Voltaje NAV1.8/genética , Potenciales de Acción/genética , Animales , Biomarcadores , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Trastorno del Sistema de Conducción Cardíaco/genética , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Electrofisiología Cardíaca , Susceptibilidad a Enfermedades , Electrocardiografía , Femenino , Estudios de Asociación Genética , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
11.
Development ; 146(14)2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31285354

RESUMEN

Among lizards, only monitor lizards (Varanidae) have a functionally divided cardiac ventricle. The division results from the combined function of three partial septa, which may be homologous to the ventricular septum of mammals and archosaurs. We show in developing monitors that two septa, the 'muscular ridge' and 'bulbuslamelle', express the evolutionarily conserved transcription factors Tbx5, Irx1 and Irx2, orthologues of which mark the mammalian ventricular septum. Compaction of embryonic trabeculae contributes to the formation of these septa. The septa are positioned, however, to the right of the atrioventricular junction and they do not participate in the separation of incoming atrial blood streams. That separation is accomplished by the 'vertical septum', which expresses Tbx3 and Tbx5 and orchestrates the formation of the electrical conduction axis embedded in the ventricular septum. These expression patterns are more pronounced in monitors than in other lizards, and are associated with a deep electrical activation near the vertical septum, in contrast to the primitive base-to-apex activation of other lizards. We conclude that evolutionarily conserved transcriptional programmes may underlie the formation of the ventricular septa of monitors.


Asunto(s)
Lagartos/embriología , Tabique Interventricular/embriología , Animales , Ecocardiografía/veterinaria , Embrión no Mamífero , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/embriología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/embriología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Lagartos/genética , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/fisiología , Imagen de Lapso de Tiempo , Tabique Interventricular/diagnóstico por imagen
12.
Development ; 146(8)2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30936179

RESUMEN

The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3+/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3+/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.


Asunto(s)
Nodo Sinoatrial/metabolismo , Transcriptoma/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Electrocardiografía , Femenino , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Mutantes , Microscopía Fluorescente , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Anat ; 240(2): 357-375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34569075

RESUMEN

The ventricular walls of the human heart comprise an outer compact layer and an inner trabecular layer. In the context of an increased pre-test probability, diagnosis left ventricular noncompaction cardiomyopathy is given when the left ventricle is excessively trabeculated in volume (trabecular vol >25% of total LV wall volume) or thickness (trabecular/compact (T/C) >2.3). Here, we investigated whether higher spatial resolution affects the detection of trabeculation and thus the assessment of normal and excessively trabeculated wall morphology. First, we screened left ventricles in 1112 post-natal autopsy hearts. We identified five excessively trabeculated hearts and this low prevalence of excessive trabeculation is in agreement with pathology reports but contrasts the prevalence of approximately 10% of the population found by in vivo non-invasive imaging. Using macroscopy, histology and low- and high-resolution MRI, the five excessively trabeculated hearts were compared with six normal hearts and seven abnormally trabeculated and excessive trabeculation-negative hearts. Some abnormally trabeculated hearts could be considered excessively trabeculated macroscopically because of a trabecular outflow or an excessive number of trabeculations, but they were excessive trabeculation-negative when assessed with MRI-based measurements (T/C <2.3 and vol <25%). The number of detected trabeculations and T/C ratio were positively correlated with higher spatial resolution. Using measurements on high resolution MRI and with histological validation, we could not replicate the correlation between trabeculations of the left and right ventricle that has been previously reported. In conclusion, higher spatial resolution may affect the sensitivity of diagnostic measurements and in addition could allow for novel measurements such as counting of trabeculations.


Asunto(s)
Cardiomiopatías , No Compactación Aislada del Miocardio Ventricular , Corazón , Ventrículos Cardíacos/anatomía & histología , Humanos , No Compactación Aislada del Miocardio Ventricular/diagnóstico , No Compactación Aislada del Miocardio Ventricular/patología , Imagen por Resonancia Magnética
14.
Circ Res ; 127(2): 229-243, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32248749

RESUMEN

RATIONALE: Genome-wide association studies have identified a large number of common variants (single-nucleotide polymorphisms) associated with atrial fibrillation (AF). These variants are located mainly in noncoding regions of the genome and likely include variants that modulate the function of transcriptional regulatory elements (REs) such as enhancers. However, the actual REs modulated by variants and the target genes of such REs remain to be identified. Thus, the biological mechanisms by which genetic variation promotes AF has thus far remained largely unexplored. OBJECTIVE: To identify REs in genome-wide association study loci that are influenced by AF-associated variants. METHODS AND RESULTS: We screened 2.45 Mbp of human genomic DNA containing 12 strongly AF-associated loci for RE activity using self-transcribing active regulatory region sequencing and a recently generated monoclonal line of conditionally immortalized rat atrial myocytes. We identified 444 potential REs, 55 of which contain AF-associated variants (P<10-8). Subsequently, using an adaptation of the self-transcribing active regulatory region sequencing approach, we identified 24 variant REs with allele-specific regulatory activity. By mining available chromatin conformation data, the possible target genes of these REs were mapped. To define the physiological function and target genes of such REs, we deleted the orthologue of an RE containing noncoding variants in the Hcn4 (potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4) locus of the mouse genome. Mice heterozygous for the RE deletion showed bradycardia, sinus node dysfunction, and selective loss of Hcn4 expression. CONCLUSIONS: We have identified REs at multiple genetic loci for AF and found that loss of an RE at the HCN4 locus results in sinus node dysfunction and reduced gene expression. Our approach can be broadly applied to facilitate the identification of human disease-relevant REs and target genes at cardiovascular genome-wide association studies loci.


Asunto(s)
Fibrilación Atrial/genética , Elementos de Facilitación Genéticos , Animales , Fibrilación Atrial/metabolismo , Sitios Genéticos , Genoma Humano , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo
15.
Circ Res ; 127(1): 34-50, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32717170

RESUMEN

Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.


Asunto(s)
Fibrilación Atrial/genética , Epigénesis Genética , Redes Reguladoras de Genes , Animales , Fibrilación Atrial/metabolismo , Sitios Genéticos , Humanos , Transcriptoma
16.
Circ Res ; 127(12): 1522-1535, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040635

RESUMEN

RATIONALE: The development and function of the pacemaker cardiomyocytes of the sinoatrial node (SAN), the leading pacemaker of the heart, are tightly controlled by a conserved network of transcription factors, including TBX3 (T-box transcription factor 3), ISL1 (ISL LIM homeobox 1), and SHOX2 (short stature homeobox 2). Yet, the regulatory DNA elements (REs) controlling target gene expression in the SAN pacemaker cells have remained undefined. OBJECTIVE: Identification of the regulatory landscape of human SAN-like pacemaker cells and functional assessment of SAN-specific REs potentially involved in pacemaker cell gene regulation. METHODS AND RESULTS: We performed Assay for Transposase-Accessible Chromatin using sequencing on human pluripotent stem cell-derived SAN-like pacemaker cells and ventricle-like cells and identified thousands of putative REs specific for either human cell type. We validated pacemaker cell-specific elements in the SHOX2 and TBX3 loci. CRISPR-mediated homozygous deletion of the mouse ortholog of a noncoding region with candidate pacemaker-specific REs in the SHOX2 locus resulted in selective loss of Shox2 expression from the developing SAN and embryonic lethality. Putative pacemaker-specific REs were identified up to 1 Mbp upstream of TBX3 in a region close to MED13L harboring variants associated with heart rate recovery after exercise. The orthologous region was deleted in mice, which resulted in selective loss of expression of Tbx3 from the SAN and (cardiac) ganglia and in neonatal lethality. Expression of Tbx3 was maintained in other tissues including the atrioventricular conduction system, lungs, and liver. Heterozygous adult mice showed increased SAN recovery times after pacing. The human REs harboring the associated variants robustly drove expression in the SAN of transgenic mouse embryos. CONCLUSIONS: We provided a genome-wide collection of candidate human pacemaker-specific REs, including the loci of SHOX2, TBX3, and ISL1, and identified a link between human genetic variants influencing heart rate recovery after exercise and a variant RE with highly conserved function, driving SAN expression of TBX3.


Asunto(s)
Relojes Biológicos , Elementos de Facilitación Genéticos , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Nodo Sinoatrial/metabolismo , Proteínas de Dominio T Box/metabolismo , Potenciales de Acción , Animales , Línea Celular , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Transgénicos , Mutación , Proteínas de Dominio T Box/genética , Pez Cebra
17.
Pediatr Cardiol ; 43(4): 796-806, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988599

RESUMEN

Tricuspid valve agenesis/atresia (TVA) is a congenital cardiac malformation where the tricuspid valve is not formed. It is hypothesized that TVA results from a failure of the normal rightward expansion of the atrioventricular canal (AVC). We tested predictions of this hypothesis by morphometric analyses of the AVC in fetal hearts. We used high-resolution MRI and ultrasonography on a post-mortem fetal heart with TVA and with tricuspid valve stenosis (TVS) to validate the position of measurement landmarks that were to be applied to clinical echocardiograms. This revealed a much deeper right atrioventricular sulcus in TVA than in TVS. Subsequently, serial echocardiograms of in utero fetuses between 12 and 38 weeks of gestation were included (n = 23 TVA, n = 16 TVS, and n = 74 controls) to establish changes in AVC width and ventricular dimensions over time. Ventricular length and width and estimated fetal weight all increased significantly with age, irrespective of diagnosis. Heart rate did not differ between groups. However, in the second trimester, in TVA, the ratio of AVC to ventricular width was significantly lower compared to TVS and controls. This finding supports the hypothesis that TVA is due to a failed rightward expansion of the AVC. Notably, we found in the third trimester that the AVC to ventricular width normalized in TVA fetuses as their mitral valve area was greater than in controls. Hence, TVA associates with a quantifiable under-development of the AVC. This under-development is obscured in the third trimester, likely because of adaptational growth that allows for increased stroke volume of the left ventricle.


Asunto(s)
Atresia Pulmonar , Atresia Tricúspide , Ecocardiografía , Femenino , Corazón Fetal/diagnóstico por imagen , Humanos , Embarazo , Atresia Pulmonar/complicaciones , Atresia Tricúspide/complicaciones , Válvula Tricúspide/diagnóstico por imagen , Ultrasonografía Prenatal
18.
Development ; 145(23)2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478225

RESUMEN

The organized array of smooth muscle cells (SMCs) and fibroblasts in the walls of visceral tubular organs arises by patterning and differentiation of mesenchymal progenitors surrounding the epithelial lumen. Here, we show that the TBX2 and TBX3 transcription factors have novel and required roles in regulating these processes in the murine ureter. Co-expression of TBX2 and TBX3 in the inner mesenchymal region of the developing ureter requires canonical WNT signaling. Loss of TBX2/TBX3 in this region disrupts activity of two crucial drivers of the SMC program, Foxf1 and BMP4 signaling, resulting in decreased SMC differentiation and increased extracellular matrix. Transcriptional profiling and chromatin immunoprecipitation experiments revealed that TBX2/TBX3 directly repress expression of the WNT antagonists Dkk2 and Shisa2, the BMP antagonist Bmper and the chemokine Cxcl12 These findings suggest that TBX2/TBX3 are effectors of canonical WNT signaling in the ureteric mesenchyme that promote SMC differentiation by maintaining BMP4 and WNT signaling in the inner region, while restricting CXCL12 signaling to the outer layer of fibroblast-fated mesenchyme.


Asunto(s)
Tipificación del Cuerpo , Diferenciación Celular , Mesodermo/embriología , Proteínas de Dominio T Box/metabolismo , Uréter/embriología , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Peristaltismo , Proteínas de Dominio T Box/genética , Transcriptoma/genética , Uréter/metabolismo , Uréter/patología
19.
Development ; 145(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30042181

RESUMEN

A small network of spontaneously active Tbx3+ cardiomyocytes forms the cardiac conduction system (CCS) in adults. Understanding the origin and mechanism of development of the CCS network are important steps towards disease modeling and the development of biological pacemakers to treat arrhythmias. We found that Tbx3 expression in the embryonic mouse heart is associated with automaticity. Genetic inducible fate mapping revealed that Tbx3+ cells in the early heart tube are fated to form the definitive CCS components, except the Purkinje fiber network. At mid-fetal stages, contribution of Tbx3+ cells was restricted to the definitive CCS. We identified a Tbx3+ population in the outflow tract of the early heart tube that formed the atrioventricular bundle. Whereas Tbx3+ cardiomyocytes also contributed to the adjacent Gja5+ atrial and ventricular chamber myocardium, embryonic Gja5+ chamber cardiomyocytes did not contribute to the Tbx3+ sinus node or to atrioventricular ring bundles. In conclusion, the CCS is established by progressive fate restriction of a Tbx3+ cell population in the early developing heart, which implicates Tbx3 as a useful tool for developing strategies to study and treat CCS diseases.


Asunto(s)
Fascículo Atrioventricular/embriología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Fascículo Atrioventricular/metabolismo , Conexinas/metabolismo , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/citología , Organogénesis/fisiología , Proteínas de Dominio T Box/genética , Proteína alfa-5 de Unión Comunicante
20.
Genet Med ; 23(1): 103-110, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820247

RESUMEN

PURPOSE: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. METHODS: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 . These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. RESULTS: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. CONCLUSION: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.


Asunto(s)
Aneurisma de la Aorta Torácica , Cardiopatías Congénitas , Aneurisma de la Aorta Torácica/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Predisposición Genética a la Enfermedad , Células Germinativas , Cardiopatías Congénitas/genética , Humanos , Linaje , Proteínas Represoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA