RESUMEN
Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.
Asunto(s)
Complejo Mayor de Histocompatibilidad/inmunología , Péptidos/inmunología , Linfocitos T/inmunología , Animales , Humanos , Ligandos , Receptores de Antígenos de Linfocitos T/inmunología , Timo/inmunologíaRESUMEN
Highly functional CD8(+) effector T (Teff) cells can persist in large numbers during controlled persistent infections, as exemplified by rare HIV-infected individuals who control the virus. Here we examined the cellular mechanisms that maintain ongoing T effector responses using a mouse model for persistent Toxoplasma gondii infection. In mice expressing the protective MHC-I molecule, H-2L(d), a dominant T effector response against a single parasite antigen was maintained without a contraction phase, correlating with ongoing presentation of the dominant antigen. Large numbers of short-lived Teff cells were continuously produced via a proliferative, antigen-dependent intermediate (Tint) population with a memory-effector hybrid phenotype. During an acute, resolved infection, decreasing antigen load correlated with a sharp drop in the Tint cell population and subsequent loss of the ongoing effector response. Vaccination approaches aimed at the development of Tint populations might prove effective against pathogens that lead to chronic infection.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Subgrupos Linfocitarios/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Presentación de Antígeno , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Linfocitos T CD8-positivos/parasitología , Proliferación Celular , Células Cultivadas , Enfermedad Crónica , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase I/metabolismo , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Memoria Inmunológica , Subgrupos Linfocitarios/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genéticaRESUMEN
T helper (Th) cells are critical for defenses against infection and recognize peptides bound to class II major histocompatibility complex (MHC II) molecules. Although transcription factors have been identified that direct Th cells into specific effector fates, whether a "master" regulator controls the developmental program common to all Th cells remains unclear. Here, we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok, which only displayed LRF-dependent functions, contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extracellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function.
Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Transcripción/inmunología , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Colaboradores-Inductores/citología , Factores de Transcripción/deficienciaAsunto(s)
Receptores de Antígenos de Linfocitos T/metabolismo , Complejo CD3/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Células Jurkat , Fosforilación , Complejo Receptor-CD3 del Antígeno de Linfocito T/metabolismo , Receptores de Antígenos de Linfocitos T/químicaRESUMEN
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood. Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.
Asunto(s)
Presentación de Antígeno/fisiología , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Toxoplasma/inmunología , Animales , Antígenos de Protozoos/genética , Epítopos de Linfocito T/genética , Células L , Ratones , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/genética , Toxoplasma/genéticaRESUMEN
CD28 is required for maximal proliferation of CD4+ T cells stimulated through their TCRs. Two sites within the cytoplasmic tail of CD28, a YMNM sequence that recruits PI3K and activates NF-κB and a PYAP sequence that recruits Lck, are candidates as transducers of the signals responsible for these biological effects. We tested this proposition by tracking polyclonal peptide:MHCII-specific CD4+ T cells in vivo in mice with mutations in these sites. Mice lacking CD28 or its cytoplasmic tail had the same number of naive T cells specific for a peptide:MHCII ligand as wild-type mice. However, the mutant cells produced one tenth as many effector and memory cells as wild-type T cells after infection with bacteria expressing the antigenic peptide. Remarkably, T cells with a mutated PI3K binding site, a mutated PYAP site, or both mutations proliferated to the same extent as wild-type T cells. The only observed defect was that T cells with a mutated PYAP or Y170F site proliferated even more weakly in response to peptide without adjuvant than wild-type T cells. These results show that CD28 enhances T cell proliferation during bacterial infection by signals emanating from undiscovered sites in the cytoplasmic tail.
Asunto(s)
Antígenos CD28/fisiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Diferenciación Celular/inmunología , Listeriosis/inmunología , Listeriosis/patología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/inmunología , Animales , Antígenos CD28/química , Antígenos CD28/genética , Linfocitos T CD4-Positivos/microbiología , Diferenciación Celular/genética , Línea Celular Transformada , Células Clonales , Citoplasma/inmunología , Citoplasma/microbiología , Citoplasma/patología , Epítopos de Linfocito T/biosíntesis , Antígenos de Histocompatibilidad Clase II/inmunología , Listeriosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunologíaRESUMEN
It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.
Asunto(s)
Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Factores de Transcripción Forkhead/análisis , Antígenos de Histocompatibilidad Clase II/inmunología , Timo/inmunología , Animales , Supresión Clonal , Tolerancia Inmunológica , Ratones , Receptores de Antígenos de Linfocitos T/fisiología , Linfocitos T Reguladores/inmunologíaRESUMEN
Naive CD4(+) T cell populations that express TCRs specific for different foreign peptide-MHC class II complex (pMHCII) ligands can vary in size over several orders of magnitude. This variation may explain why immune responses to some peptides are stronger than others. In this study, we used a sensitive pMHCII-tetramer-based cell enrichment method to study the derivation of two naive foreign pMHCII-specific naive CD4(+) T cell populations that differed in size by 8-fold in normal mice. Analysis of mice in which thymic negative selection was impaired revealed that the smaller population underwent more clonal deletion than the larger population. In addition, large naive cell populations tended to recognize peptides with tryptophan residues as TCR contacts. Thus, the foreign pMHCII that tend to be recognized by large naive populations induce minimal clonal deletion and contain certain amino acids with the capacity to interact favorably with TCRs.
Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Activación de Linfocitos/inmunología , Péptidos/inmunología , Animales , Antígenos/química , Linfocitos T CD4-Positivos/citología , Recuento de Células , Ratones , Ratones Noqueados , Péptidos/química , Receptores de Antígenos de Linfocitos T/inmunologíaRESUMEN
T cell receptors (TCRs) on T lymphocytes in an individual bind foreign peptides bound to major histocompatibility complex (MHC) molecules expressed in that individual (designated MHC(A)). Results from radiation bone marrow chimeras and TCR transgenic mice indicate that this complex form of antigen recognition is the result of positive selection of clones with low affinity for self peptide:MHC(A) complexes during development. Here we used a sensitive peptide:MHC tetramer enrichment method to quantify the role of positive selection in the generation of the preimmune polyclonal T cell repertoire in normal individuals. We made the surprising observation that mouse and human naive T cells capable of binding to foreign peptide:MHC(A) were present at the same frequency in hosts that expressed MHC(A) or a different MHC isoform (MHC(B)). However, most of the clones in MHC(B) hosts also recognized self peptide:MHC(A) complexes. When these "alloreactive" T cells were removed from the MHC(B) repertoire via negative selection in an MHC(A) host, the number of foreign peptide:MHC(A)-binding T cells was reduced to one fifth and many of the remaining cells did not respond to the peptide. Therefore, although positive selection on MHC(A) was not required to produce foreign peptide:MHC(A)-binding clones, it had a large effect on selecting responsive clones.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Selección Genética , Animales , Linfocitos T CD4-Positivos/citología , Quimera/inmunología , Células Clonales , Cruzamientos Genéticos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Péptidos/inmunologíaRESUMEN
Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vß2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vß2-containing TCRs and correlates with an unusual Vα-Vß interface, CDR loop conformations, and Vß2-specific germline contacts with peptides. Vß2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.
Asunto(s)
Linfocitos T CD8-positivos , Péptidos , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , Linfocitos T CD8-positivos/inmunología , Células Germinativas/inmunología , Antígeno de Histocompatibilidad H-2D/inmunología , Conformación Molecular , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Transglutaminasas/inmunologíaRESUMEN
CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma, but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen, ROP5, that elicits a CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense-granule antigen GRA6 is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense-granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion affects the efficacy of parasite-specific CD8 T cell responses.
Asunto(s)
Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Proteínas Protozoarias/inmunología , Vías Secretoras , Toxoplasma/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Epítopos/química , Epítopos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Toxoplasma/inmunologíaRESUMEN
The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide--MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation.
Asunto(s)
Complejo CD3/química , Complejo CD3/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Antígeno HLA-DR4/metabolismo , Humanos , Sinapsis Inmunológicas/inmunología , Sinapsis Inmunológicas/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/antagonistas & inhibidores , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Electricidad Estática , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
The tracking of antigen-specific T cells in vivo is a useful approach for the study of the adaptive immune response. This protocol describes how populations of T cells specific for a given peptide-major histocompatibility complex (pMHC) epitope can be tracked based solely on T-cell receptor (TCR) specificity as opposed to other indirect methods based on function. The methodology involves the adoptive transfer of TCR transgenic T cells with defined epitope specificity into histocompatible mice and the subsequent detection of these cells through the use of congenic or clonotypic markers. Alternatively, endogenous epitope-specific T cells can be tracked directly through the use of pMHC tetramers. Using magnetic bead-based enrichment and advanced multiparameter flow cytometry, populations as small as five epitope-specific T cells can be detected from the peripheral lymphoid organs of a mouse. The adoptive transfer procedure can be completed within 3 h, whereas analysis of epitope-specific cells from mice can be completed within 6 h.
Asunto(s)
Epítopos de Linfocito T/análisis , Citometría de Flujo/métodos , Linfocitos T/inmunología , Animales , Sitios de Unión , Recuento de Células/métodos , Técnicas de Cultivo de Célula , Epítopos de Linfocito T/genética , Marcadores Genéticos , Magnetismo , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/químicaRESUMEN
Appropriate development of regulatory T (Treg) cells is necessary to prevent autoimmunity. Neonatal mice, unlike adults, lack factors required for Treg cell development. It is unclear what these missing factors are. However, signals emanating from the T cell receptor (TCR), the costimulatory receptor CD28, and the family of gammac-dependent cytokine receptors are required for Treg cell development. Herein we demonstrate that expression of a constitutively active Stat5b transgene (Stat5b-CA) allowed for Treg cell development in neonatal mice and restored Treg cell numbers in Cd28(-/-) mice. Sequence analysis of TCR genes in Stat5b-CA Treg cells indicated that ectopic STAT5 activation resulted in a TCR repertoire that more closely resembled that of naive T cells. Using MHCII tetramers to identify antigen-specific T cells, we showed that STAT5 signals diverted thymocytes normally destined to become naive T cells into the Treg cell lineage. Our data support a two-step model of Treg cell differentiation in which TCR and CD28 signals induce cytokine responsiveness and STAT5-inducing cytokines then complete the program of Treg cell differentiation.
Asunto(s)
Diferenciación Celular/inmunología , Citocinas/biosíntesis , Receptores de Antígenos de Linfocitos T/inmunología , Autotolerancia/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/citología , Animales , Animales Recién Nacidos , Western Blotting , Antígenos CD28/inmunología , Antígenos CD28/metabolismo , Linaje de la Célula/inmunología , Citometría de Flujo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Factor de Transcripción STAT5/inmunología , Factor de Transcripción STAT5/metabolismo , Análisis de SecuenciaRESUMEN
Cell-mediated immunity stems from the proliferation of naive T lymphocytes expressing T cell antigen receptors (TCRs) specific for foreign peptides bound to host major histocompatibility complex (MHC) molecules. Because of the tremendous diversity of the T cell repertoire, naive T cells specific for any one peptide:MHC complex (pMHC) are extremely rare. Thus, it is not known how many naive T cells of any given pMHC specificity exist in the body or how that number influences the immune response. By using soluble pMHC class II (pMHCII) tetramers and magnetic bead enrichment, we found that three different pMHCII-specific naive CD4(+) T cell populations vary in frequency from 20 to 200 cells per mouse. Moreover, naive population size predicted the size and TCR diversity of the primary CD4(+) T cell response after immunization with relevant peptide. Thus, variation in naive T cell frequencies can explain why some peptides are stronger immunogens than others.