Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 8(3): e1000343, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20351773

RESUMEN

Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances.


Asunto(s)
Evolución Biológica , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , ADN/genética , ADN/metabolismo , Drosophila/embriología , Genes de Insecto , Genoma de los Insectos , Análisis de Componente Principal , Unión Proteica , Factores de Transcripción/genética
2.
Mol Syst Biol ; 7: 487, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21556065

RESUMEN

Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes.


Asunto(s)
1-Butanol , Biocombustibles , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Proteínas de Transporte de Membrana/genética , Pentanoles , 1-Butanol/metabolismo , 1-Butanol/toxicidad , Biocombustibles/toxicidad , Biología Computacional , Escherichia coli/crecimiento & desarrollo , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas , Análisis por Micromatrices , Pentanoles/metabolismo , Pentanoles/toxicidad
3.
PLoS Biol ; 6(2): e27, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18271625

RESUMEN

Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. We used whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over 40 well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.


Asunto(s)
Blastodermo/metabolismo , Drosophila melanogaster/embriología , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , ADN/metabolismo , Evolución Molecular , MicroARNs/metabolismo
4.
Genome Biol ; 10(7): R80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19627575

RESUMEN

BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.


Asunto(s)
Blastodermo/metabolismo , Proteínas de Drosophila/metabolismo , Genoma de los Insectos/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Tipificación del Cuerpo/genética , Inmunoprecipitación de Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Unión Proteica , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA