RESUMEN
Tandem nitrate electroreduction reaction (NO3 -RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3 --to-NO2 - and NO2 --to-NH3 results in poor selectivity for NH3 and excess NO2 - evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3 -RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4â mg â cm-2 â h-1 with a Faradaic efficiency of 97.8 % at -0.42â V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3 -RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3 -RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.
RESUMEN
Little information is available on the roles of natural phenolic compounds in polycyclic aromatic hydrocarbons (PAHs) attenuation at dry soil-air interfaces. The purpose of this study was to determine the roles of model phenolic constituents of soil organic matter (SOM) on the abiotic attenuation of PAHs. The phenolic compounds can significantly change the attenuation rates of PAHs, among which hydroquinone was the most effective in promoting anthracene and benzo[a]anthracene attenuation. Product identification and sequential extraction experiments revealed hydroquinone enhanced the formation of oxidative coupling products and promoted the incorporation of PAHs into humic analogues, thereby reducing potential risks to humans and ecosystems. Electron paramagnetic resonance spectroscopy analyses showed both PAHs and phenolic compounds could donate electrons to Lewis acid sites of soil minerals, resulting in the generation of persistent free radicals (PFRs). PFRs could promote the generation of ·OH to enhance PAH oxidation and could cross-couple with PAHs, resulting in high-molecular-weight oxidative coupling products. This study revealed for the first time the reaction mechanism between PAHs and phenolic components of SOM under relatively dry conditions and provided new insights into promoting PAHs detoxification in soils but also a potential strategy to increase the organic carbon sequestration.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Suelo/química , Hidroquinonas/análisis , Acoplamiento Oxidativo , Ecosistema , Antracenos/análisis , Fenoles , Radicales LibresRESUMEN
Polycyclic aromatic hydrocarbon (PAH) contamination has raised great environmental concerns, while the effects of low-molecular-weight organic compounds (LMWOCs) on PAH photodegradation at amorphous silica (AS)/air interfaces have been largely ignored. In this study, the phototransformation of anthracene (ANT) at amorphous silica (AS)/air interfaces was investigated with the addition of LMWOCs. ANT removal was attributed to â¢OH attacking and the energy transfer process via 3ANT*. Light irradiation induced the fractured ≡SiO⢠or ≡Si⢠generation on AS surfaces, which could react with absorbed H2O and O2 to generate â¢OH and further yield a series of hydroxylated products of ANT. The presence of citric acid and oxalic acid improved â¢OH generation and enhanced ANT removal by 1.0- and 2.2-fold, respectively. For comparison, the presence of catechol and hydroquinone significantly decreased ANT removal and produced coupling products. The results of density functional theory calculations suggest that persistent free radicals (PFRs) on AS surfaces from catechol or hydroquinone after â¢OH attacking prefer to cross-couple with ANT via C-C bonding rather than self-couple. Dianthrone and cross-coupling products might possess higher ecotoxicity, while hydroxylated products were less ecotoxic than their parent compounds based on Ecological Structure Activity Relationships (ECOSAR) estimation. The results of this study revealed the potential ecotoxicity of PAH-adsorbed particulates coexisting with LMWOCs and also provided a new insight into PAH transformation through PFR pathways.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Dióxido de Silicio , Antracenos/toxicidad , Radicales Libres , Fotólisis , Hidrocarburos Policíclicos Aromáticos/toxicidadRESUMEN
Nano-Fe2O3 embedded in montmorillonite particles (Fe-Mt) were prepared to degrade diethyl phthalate (DEP) with citric acid (CA) under xenon light irradiation. Compared to pristine montmorillonite (Na-Mt), the embedding process increased 14.5-fold of iron content and 1.8-fold of specific surface area. The synthesized Fe-Mt have more oxygen vacancies than Fe2O3 nanoparticles (nFe2O3), which could induce more reactive oxygen species (ROSs) generation in the presence of CA under xenon lamp irradiation. Fe-Mt with CA enhanced photo-assisted degradation of DEP 2.5 times as compared to nFe2O3 with CA. Quenching experiments, electron paramagnetic resonance (EPR) spectroscopy and identification of products confirmed that surface-bound â¢OH was the main radical to degrade DEP. Common anions (i.e., NO3-, CO32-, Cl-) and humic acid could compete â¢OH with DEP and cause slower degradation of DEP. The removal efficiency of DEP was more than 56% with Fe-Mt after three recycles, and the dissolved Fe concentration from Fe-Mt was below 75 µmol/L, indicating Fe-Mt had a good stability as a catalyst. Fe-Mt together with CA appeared to be a promising strategy to remove organic pollutants in surface water, or topsoil under solar irradiation.
Asunto(s)
Nanopartículas , Ácidos Ftálicos , Bentonita , Ácido Cítrico , Peróxido de HidrógenoRESUMEN
Persulfate-based electrokinetic (EK) chemical oxidation appears to be a novel and viable strategy for the in situ remediation of polycyclic aromatic hydrocarbons (PAHs) polluted soil; however, the possible toxic byproducts of PAHs have been overlooked. In this study, we systematically investigated the formation mechanism of the nitro-byproducts of anthracene (ANT) during the EK process. Electrochemical experiments revealed that NH4+ and NO2- originating from nitrate electrolyte or soil substrates were oxidized to NO2⢠and NO⢠in the presence of SO4â¢-. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS) analysis with 15N labeling revealed the formation of nitro-byproducts (14 kinds), including 1-hydroxy-4-nitro-anthraquinone and its similar derivatives, 4-nitrophenol, and 2,4-dinitrophenol. The nitration pathways of ANT have been proposed and described, mainly including the formation of hydroxyl-anthraquinone-oxygen and phenoxy radicals and the subsequent addition of NO2⢠and NOâ¢. ANT-based formation of nitro-byproducts during EK, which is usually underestimated, should be further investigated due to their enhanced acute toxicity, mutagenic effects, and potential threat to the ecosystem.
RESUMEN
Electrokinetic (EK) remediation technology can enhance the migration of reagents to soil and is especially suitable for in situ remediation of low permeability contaminated soil. Due to the long aging time and strong hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) from historically polluted soil, some enhanced reagents (oxidant, activator, and surfactant) were used to increase the mobility of PAHs, and remove and degrade PAHs in soil. However, under the electrical field, there are few reports on the roles and combined effect of oxidant, activator, and surfactant for remediation of PAHs historically contaminated soil. In the present study, sodium persulfate (PS, oxidant, 100 g L-1) or/and Tween 80 (TW80, surfactant, 50 g L-1) were added to the anolyte, and citric acid chelated iron(II) (CA-Fe(II), activator, 0.10 mol L-1) was added to catholyte to explore the roles and contribution of enhanced reagents and combined effect on PAHs removal in soil. A constant voltage of 20 V was applied and the total experiment duration was 10 days. The results showed that the removal rate of PAHs in each treatment was PS + CA-Fe(II) (21.3%) > PS + TW80 + CA-Fe(II) (19.9%) > PS (17.4%) > PS + TW80 (11.4%) > TW80 (8.1%) > CK (7.5%). The combination of PS and CA-Fe(II) had the highest removal efficiency of PAHs, and CA-Fe(II) in the catholyte could be transported toward anode via electromigration. The addition of TW80 reduced the electroosmotic flow and inhibited the transport of PS from anolyte to the soil, which decreased the removal of PAHs (from 17.4 to 11.4% with PS, from 21.3 to 19.9% with PS+CA-Fe(II)). The calculation of contribution rates showed that PS was the strongest enhancer (3.3~9.9%), followed by CA-Fe(II) (3.9~8.5%) (with PS), and the contribution of TW80 was small and even negative (-1.4~0.6%). The above results indicated that the combined application of oxidant and activator was conducive to the removal of PAHs, while the addition of surfactant reduced the EOF and the migration of oxidant and further reduced the PAHs removal efficiency. The present study will help to further understand the role of enhanced reagents (especially surfactant) during enhanced EK remediation of PAHs historically contaminated soil.
Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Tensoactivos , Oxidantes , Suelo , Compuestos FerrososRESUMEN
Electrokinetic-Fenton (EK-Fenton) technology requires a high dose of H2O2 to produce â¢OH radicals, which adds a high cost to the remediation process and raises safety concerns during transportation and storage of H2O2. Moreover, the remediation efficiency of the conventional EK-Fenton process is low due to the meaningless consumption of H2O2 on the electrodes and the alkaline environment near the cathode. In this work, a modified CMK3-gas diffusion electrode (CMK3-GDE) is fabricated. This cathode can continuously generate H2O2, and the cumulative H2O2 concentration can reach 0.23 M during 10 days of the test. The utilization of cation exchange membranes (CEMs) efficiently restricts the decomposition of H2O2 on the electrodes and prevents the alkalization of the soil near the cathode, resulting in a 13.7-43.2% increase of the removal efficiency of polycyclic aromatic hydrocarbons (PAHs). In this new treatment process, PAHs are mainly oxidized into quinones, ketones, alcohols, and small molecule acids, and all these products have lower toxicities than PAHs. The EK-Fenton/CMK3-GDE-CEM system exhibits excellent remediation efficiency for treating PAHs polluted soil, which could be a sustainable, eco-friendly, and low-cost strategy for soil remediation.
Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Electrodos , Peróxido de Hidrógeno , Suelo , Contaminantes del Suelo/análisisRESUMEN
Electrokinetic in-situ chemical oxidation (EK-ISCO) has attracted much attention during remediation of organic contaminated soil. Oxidants in EK-ISCO brings high cost and negative effects on soil physicochemical properties. In this study, a novel approach of combined electrokinetic treatment and anode oxidation was investigated to remediate phenanthrene polluted soils without adding oxidants. The fabricated Ti4O7 acted as anode, and could generate â¢OH at the rate of 9.31 × 10-7 mol h-1 at current 5.10 mA cm-2 through direct H2O electrolysis. Electro-osmotic flow (EOF) was used to transport phenanthrene to anode for the subsequent degradation. Sandy soil, fluvo-aquic soil and red soil were selected as typical soil samples, because pH and buffer capacity were two important factors affecting the direction of EOF. Strategies were developed to regulate the direction of EOF, including adding CEM membrane, maintaining soil pH at 3.5-4.0 and mixing solution from anode and cathode chambers. After treatment, more than 81.9% of phenanthrene was removed without adding any oxidants, and the remediated soil had low toxicity for Lolium perenne growth based on 3-d cultivation results. The results indicated that EK-AO had the advantage of less energy consumption and superior environmental friendliness than traditional EK-ISCO.
Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Electrodos , Indicadores y Reactivos , Oxidantes , Fenantrenos , Suelo , Contaminantes del Suelo/análisisRESUMEN
The frequently occurring redox fluctuations in paddy soil are critical to the cycling of redox-sensitive elements (e.g., iron (Fe) and carbon) due to the driving of microbial processes. However, the associated abiotic process, such as hydroxyl radical (â¢OH) formation, was rarely investigated. Hence, we examined the under-appreciated role of â¢OH formation in driving polycyclic aromatic hydrocarbons (PAHs) degradation upon oxygenation of anoxic paddy slurries. Results showed that â¢OH production largely differed in different paddy slurries, in the range of 271.5-581.2 µmol kg-1 soil after 12 h reaction. The â¢OH production was highly hinged on the contents of active Fe species, i.e., exchangeable, surface-bound Fe and Fe in low-crystalline phases rather than Fe in high-crystalline minerals or silicates. Besides, â¢OH production significantly decreased with increasing soil depth due to the declined active Fe species and abundance of functional microbes. Oxygenation also induced the transformation of these active Fe species into the low- and high-crystalline phases, which might affect the following redox process. The produced â¢OH can efficiently degrade PAHs with degradation extents depending on their physiochemical properties. Our findings highlight the key roles of active Fe species in driving â¢OH formation and organic contaminants degradation during redox fluctuations of paddy soils.