Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(20)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38286015

RESUMEN

A transfer-free graphene with high magnetoresistance (MR) and air stability has been synthesized using nickel-catalyzed atmospheric pressure chemical vapor deposition. The Raman spectrum and Raman mapping reveal the monolayer structure of the transfer-free graphene, which has low defect density, high uniformity, and high coverage (>90%). The temperature-dependent (from 5 to 300 K) current-voltage (I-V) and resistance measurements are performed, showing the semiconductor properties of the transfer-free graphene. Moreover, the MR of the transfer-free graphene has been measured over a wide temperature range (5-300 K) under a magnetic field of 0 to 1 T. As a result of the Lorentz force dominating above 30 K, the transfer-free graphene exhibits positive MR values, reaching ∼8.7% at 300 K under a magnetic field (1 Tesla). On the other hand, MR values are negative below 30 K due to the predominance of the weak localization effect. Furthermore, the temperature-dependent MR values of transfer-free graphene are almost identical with and without a vacuum annealing process, indicating that there are low density of defects and impurities after graphene fabrication processes so as to apply in air-stable sensor applications. This study opens avenues to develop 2D nanomaterial-based sensors for commercial applications in future devices.

2.
Nanotechnology ; 35(16)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154139

RESUMEN

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2films grown on Si showing the chiral anomaly. Here,for the first time, we report the novel preparation and fabrication technique of a Cd3As2(112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry's phase ofπ. Despite the Hall carrier density (n3D≈9.42×1017cm-3) of our Cd3As2film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2film. Our tailoring growth of Cd3As2on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA