Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell ; 152(1-2): 236-47, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332758

RESUMEN

The sigma-1 receptor (Sig-1R), an endoplasmic reticulum (ER) chaperone protein, is an interorganelle signaling modulator that potentially plays a role in drug-seeking behaviors. However, the brain site of action and underlying cellular mechanisms remain unidentified. We found that cocaine exposure triggers a Sig-1R-dependent upregulation of D-type K(+) current in the nucleus accumbens (NAc) that results in neuronal hypoactivity and thereby enhances behavioral cocaine response. Combining ex vivo and in vitro studies, we demonstrated that this neuroadaptation is caused by a persistent protein-protein association between Sig-1Rs and Kv1.2 channels, a phenomenon that is associated to a redistribution of both proteins from intracellular compartments to the plasma membrane. In conclusion, the dynamic Sig-1R-Kv1.2 complex represents a mechanism that shapes neuronal and behavioral response to cocaine. Functional consequences of Sig-1R binding to K(+) channels may have implications for other chronic diseases where maladaptive intrinsic plasticity and Sig-1Rs are engaged.


Asunto(s)
Cocaína/administración & dosificación , Canal de Potasio Kv.1.2/metabolismo , Plasticidad Neuronal , Núcleo Accumbens/metabolismo , Receptores sigma/metabolismo , Animales , Comportamiento de Búsqueda de Drogas , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores sigma/genética , Receptor Sigma-1
2.
BMC Cancer ; 23(1): 713, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525108

RESUMEN

BACKGROUND: Glioblastoma (GBM), a malignant brain tumor, has poor survival outcomes due to recurrence or drug resistance. We found that SH3GLB1 is a crucial factor for cells to evade temozolomide (TMZ) cytotoxicity through autophagy-mediated oxidative phosphorylation, which is associated with CD133 levels. Therefore, we propose that SH3GLB1 participate in the impact on tumor-initiating cells (TICs). METHODS: The parental, the derived resistant cell lines and their CD133+ cells were used, and the levels of the proteins were compared by western blotting. Then RNA interference was applied to observe the effects of the target protein on TIC-related features. Finally, in vitro transcription assays were used to validate the association between SH3GLB1 and CD133. RESULTS: The CD133+ cells from resistant cells with enhanced SH3GLB1 levels more easily survived cytotoxic treatment than those from the parental cells. Inhibition of SH3GLB1 attenuated frequency and size of spheroid formation, and the levels of CD133 and histone 4 lysine 5 (H4K5) acetylation can be simultaneously regulated by SH3GLB1 modification. The H4K5 acetylation of the CD133 promoter was later suggested to be the mediating mechanism of SH3GLB1. CONCLUSIONS: These data indicate that SH3GLB1 can regulate CD133 expression, suggesting that the protein plays a crucial role in TICs. Our findings on the effects of SH3GLB1 on the cells will help explain tumor resistance formation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Línea Celular Tumoral , Temozolomida/farmacología , Temozolomida/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Interferencia de ARN , Resistencia a Antineoplásicos/genética
3.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34374463

RESUMEN

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Asunto(s)
Orientación del Axón , Conos de Crecimiento , Netrina-1 , Proteínas Proto-Oncogénicas c-vav , Animales , Orientación del Axón/fisiología , Axones/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/fisiología , Netrina-1/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología
4.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33727334

RESUMEN

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Asunto(s)
Axones/fisiología , Paxillin/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Orientación del Axón/fisiología , Embrión de Pollo , Electroporación , Efrinas/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Genes src/genética , Humanos , Masculino , Ratones , MicroARNs/genética , Neuronas Motoras/fisiología , Mutación/genética , Neuritas/fisiología , Médula Espinal/citología
5.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337344

RESUMEN

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Asunto(s)
Glioblastoma , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Ácidos Grasos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocondrias , Temozolomida/farmacología
6.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499054

RESUMEN

Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that promotes tumor progression. Moreover, higher expression of MZF1 has been associated with a worse overall survival rate among patients with GBM. Thus, MZF1 may be a promising target for therapeutic interventions. Cantharidin (CTD) has been traditionally used in Chinese medicine to induce apoptosis and inhibit cancer cell proliferation; however, the mechanism by which CTD inhibits cell proliferation remains unclear. In this study, we found that the expression of MZF1 was higher in GBM tissues than in adjacent normal tissues and low-grade gliomas. Additionally, the patient-derived GBM cells and GBM cell lines presented higher levels of MZF1 than normal human astrocytes. We demonstrated that CTD had greater anti-proliferative effects on GBM than a derivative of CTD, norcantharidin (NCTD). MZF1 expression was strongly suppressed by CTD treatment. Furthermore, MZF1 enhanced the proliferation of GBM cells and upregulated the expression of c-MYC, whereas these effects were reversed by CTD treatment. The results of our study suggest that CTD may be a promising therapeutic agent for patients with GBM and suggest a promising direction for further investigation.


Asunto(s)
Glioblastoma , Factores de Transcripción de Tipo Kruppel , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Línea Celular Tumoral , Regiones Promotoras Genéticas , Cantaridina/farmacología , Proliferación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Regulación Neoplásica de la Expresión Génica
7.
Biochem Biophys Res Commun ; 550: 113-119, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33691197

RESUMEN

B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) appears to be essential for promoting certain types of cancer, and its inhibition effectively reduced the stemness of cancer cells. Therefore, this study aimed to investigate the potential role of BMI1 in glioma. To this end, we first investigated BMI1 expression in brain tumors using microarray datasets in ONCOMINE, which indicated that BMI1 levels were not commonly increased in clinical brain tumors. Moreover, survival plots in PROGgeneV2 also showed that BMI1 expression was not significantly associated with reduced survival in glioma patients. Interestingly, stressful serum deprivation and anchorage independence growth conditions led to an increased BMI1 expression in glioma cells. A stress-responsive pathway, HDAC/Sp1, was further identified to regulate BMI1 expression. The HDAC inhibitor vorinostat (SAHA) prevented Sp1 binding to the BMI1 promoter, leading to a decreased expression of BMI1 and attenuating tumor growth of TMZ-resistant glioma xenografts. Importantly, we further performed survival analysis using PROGgeneV2 and found that an elevated expression of HDAC1,3/Sp1/BMI1 but not BMI1 alone showed an increased risk of death in both high- and low-grade glioma patients. Thus, HDAC-mediated Sp1 deacetylation is critical for BMI1 regulation to attenuate stress- and therapy-induced death in glioma cells, and the HDAC/Sp1 axis is more important than BMI1 and appears as a therapeutic target to prevent recurrence of malignant glioma cells persisting after primary therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioma/diagnóstico , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Línea Celular , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Masculino , Ratones , Pronóstico , Regiones Promotoras Genéticas/genética , Factor de Transcripción Sp1/metabolismo , Regulación hacia Arriba
8.
J Biomed Sci ; 28(1): 18, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685470

RESUMEN

Glioblastoma is the most common primary malignant brain tumor that is usually considered fatal even with treatment. This is often a result for tumor to develop resistance. Regarding the standard chemotherapy, the alkylating agent temozolomide is effective in disease control but the recurrence will still occur eventually. The mechanism of the resistance is various, and differs in terms of innate or acquired. To date, aberrations in O6-methylguanine-DNA methyltransferase are the clear factor that determines drug susceptibility. Alterations of the other DNA damage repair genes such as DNA mismatch repair genes are also known to affect the drug effect. Together these genes have roles in the innate resistance, but are not sufficient for explaining the mechanism leading to acquired resistance. Recent identification of specific cellular subsets with features of stem-like cells may have role in this process. The glioma stem-like cells are known for its superior ability in withstanding the drug-induced cytotoxicity, and giving the chance to repopulate the tumor. The mechanism is complicated to administrate cellular protection, such as the enhancing ability against reactive oxygen species and altering energy metabolism, the important steps to survive. In this review, we discuss the possible mechanism for these specific cellular subsets to evade cancer treatment, and the possible impact to the following treatment courses. In addition, we also discuss the possibility that can overcome this obstacle.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Temozolomida/farmacología , Animales , Glioblastoma/tratamiento farmacológico , Humanos
9.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072831

RESUMEN

Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of ß-catenin was reversed by proteasome inhibitor via the ß-catenin/ GSK3ß signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the ß-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/tratamiento farmacológico , Histona Desacetilasas/genética , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , beta Catenina/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Temozolomida/efectos adversos , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochem Biophys Res Commun ; 525(4): 1011-1017, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32178872

RESUMEN

In seminiferous epithelium, tight junctions (TJs) between adjacent Sertoli cells constitute the blood-testis barrier and must change synchronically for germ cells to translocate from the basal to the adluminal compartment during the spermatogenic cycle. Rho GTPase activation through stimulation with specific L-selectin ligands has been proposed to modulate tight junctional dynamics. However, little is known regarding the role of Ca+2 dynamics in Sertoli cell and how Ca+2 relays L-selectin signals to modulate Rho GTPase activity in Sertoli cells, thus prompting us to investigate the Ca+2 flux induced by L-selectin ligand in ASC-17D cells. Using fluorescent real-time image, we first demonstrated the increase of intracellular Ca+2 level following L-selectin ligand stimulation. This Ca+2 increase was inhibited in ASC-17D cells pretreated with nifedipine, the L-type voltage-operated Ca+2 channel (VOCC) blocker, but not mibefradil, the T-type VOCC blocker. We then demonstrated the up-regulation of Rho and Rac1 in ASC-17D cells following the administration of L-selectin ligand, and the pre-treatment with nifedipine, but not mibefradil, prior to L-selectin ligand-binding abolished the activation of both Rho and Rac1. Together, we conclude that the activation of L-selectin induces Ca+2 influx through the L-type VOCC, which up-regulates Rho and Rac1 proteins, in ASC-17D cells.


Asunto(s)
Calcio/metabolismo , Selectina L/metabolismo , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio , Línea Celular , Ligandos , Masculino , Mibefradil/farmacología , Nifedipino/farmacología , Imagen Óptica , Ratas , Células de Sertoli/efectos de los fármacos , Células de Sertoli/enzimología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética
11.
J Neurosci ; 38(8): 2043-2056, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29363583

RESUMEN

The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.


Asunto(s)
Orientación del Axón/fisiología , Axones/ultraestructura , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas Motoras/citología , Animales , Axones/metabolismo , Embrión de Pollo , Efrinas/metabolismo , Extremidades/inervación , Ratones , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación
12.
J Neuroinflammation ; 16(1): 146, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300060

RESUMEN

BACKGROUND: The small population of glioma stem-like cells (GSCs) contributes to tumor initiation, malignancy, and recurrence in glioblastoma. However, the maintenance of GSC properties in the tumor microenvironment remains unclear. In glioma, non-neoplastic cells create an inflammatory environment and subsequently mediate tumor progression and maintenance. Transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD) is suggested to regulate various genes responsive to inflammatory cytokines, thus prompting us to investigate its role in regulating GSCs stemness after inflammatory stimulation. METHODS: Stemness properties were analyzed by using spheroid formation. Oncomine and TCGA bioinformatic databases were used to analyze gene expression. Western blotting, quantitative real-time polymerase chain reaction, luciferase reporter assay, and chromatin immunoprecipitation assay were used to analyze proteins and gene transcript levels. The glioma tissue microarrays were used for CEBPD and PDGFA expression by immunohistochemistry staining. RESULTS: We first found that IL-1ß promotes glioma spheroid formation and is associated with elevated CEBPD expression. Using microarray analysis, platelet-derived growth factor subunit A (PDGFA) was confirmed as a CEBPD-regulated gene that mediates IL-1ß-enhanced GSCs self-renewal. Further analysis of the genomic database and tissue array revealed that the expression levels between CEBPD and PDGFA were coincident in glioma patient samples. CONCLUSION: This is the first report showing the activation of PDGFA expression by CEBPD through IL-1ß treatment and a novel CEBPD function in maintaining the self-renewal feature of GSCs.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Glioma/patología , Células Madre Neoplásicas/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Línea Celular Tumoral , Glioma/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Células Madre Neoplásicas/metabolismo
13.
J Biomed Sci ; 26(1): 77, 2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31629402

RESUMEN

BACKGROUND: Intratumor subsets with tumor-initiating features in glioblastoma are likely to survive treatment. Our goal is to identify the key factor in the process by which cells develop temozolomide (TMZ) resistance. METHODS: Resistant cell lines derived from U87MG and A172 were established through long-term co-incubation of TMZ. Primary tumors obtained from patients were maintained as patient-derived xenograft for studies of tumor-initating cell (TIC) features. The cell manifestations were assessed in the gene modulated cells for relevance to drug resistance. RESULTS: Among the mitochondria-related genes in the gene expression databases, superoxide dismutase 2 (SOD2) was a significant factor in resistance and patient survival. SOD2 in the resistant cells functionally determined the cell fate by limiting TMZ-stimulated superoxide reaction and cleavage of caspase-3. Genetic inhibition of the protein led to retrieval of drug effect in mouse study. SOD2 was also associated with the TIC features, which enriched in the resistant cells. The CD133+ specific subsets in the resistant cells exhibited superior superoxide regulation and the SOD2-related caspase-3 reaction. Experiments applying SOD2 modulation showed a positive correlation between the TIC features and the protein expression. Finally, co-treatment with TMZ and the SOD inhibitor sodium diethyldithiocarbamate trihydrate in xenograft mouse models with the TMZ-resistant primary tumor resulted in lower tumor proliferation, longer survival, and less CD133, Bmi-1, and SOD2 expression. CONCLUSION: SOD2 plays crucial roles in the tumor-initiating features that are related to TMZ resistance. Inhibition of the protein is a potential therapeutic strategy that can be used to enhance the effects of chemotherapy.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Resistencia a Antineoplásicos/genética , Glioblastoma/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Superóxido Dismutasa/administración & dosificación , Temozolomida/farmacología , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos/fisiopatología , Humanos , Ratones , Células Madre Neoplásicas/fisiología
14.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31717924

RESUMEN

Glioblastoma (GBM) is the most aggressive type of brain tumor, with strong invasiveness and a high tolerance to chemotherapy. Despite the current standard treatment combining temozolomide (TMZ) and radiotherapy, glioblastoma can be incurable due to drug resistance. The existence of glioma stem-like cells (GSCs) is considered the major reason for drug resistance. However, the mechanism of GSC enrichment remains unclear. Herein, we found that the expression and secretion of angiopoietin-like 4 protein (ANGPTL4) were clearly increased in GSCs. The overexpression of ANGPTL4 induced GSC enrichment that was characterized by polycomb complex protein BMI-1 and SRY (sex determining region Y)-box 2 (SOX2) expression, resulting in TMZ resistance in GBM. Furthermore, epidermal growth factor receptor (EGFR) phosphorylation induced 4E-BP1 phosphorylation that was required for ANGPTL4-induced GSC enrichment. In particular, ANGPTL4 induced 4E-BP1 phosphorylation by activating phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades for inducing stemness. To elucidate the mechanism contributing to ANGPTL4 upregulation in GSCs, chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) revealed that specificity protein 4 (Sp4) was associated with the promoter region, -979 to -606, and the luciferase reporter assay revealed that Sp4 positively regulated activity of the ANGPTL4 promoter. Moreover, both ANGPTL4 and Sp4 were highly expressed in GBM and resulted in a poor prognosis. Taken together, Sp4-mediated ANGPTL4 upregulation induces GSC enrichment through the EGFR/AKT/4E-BP1 cascade.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Antineoplásicos Alquilantes/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Temozolomida/farmacología
15.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30016580

RESUMEN

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Orientación del Axón/fisiología , Extremidades/fisiología , Conos de Crecimiento/fisiología , Neuronas Motoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Pollo , Quimerina 1/metabolismo , Efrinas/fisiología , Extremidades/embriología , Neuritas , Receptores de la Familia Eph/metabolismo
16.
BMC Cancer ; 18(1): 379, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614990

RESUMEN

BACKGROUND: Temozolomide (TMZ)-induced side effects and drug tolerance to human gliomas are still challenging issues now. Our previous studies showed that honokiol, a major bioactive constituent of Magnolia officinalis (Houpo), is safe for normal brain cells and can kill human glioma cells. This study was further aimed to evaluate the improved effects of honokiol and TMZ on drug-sensitive and -resistant glioma cells and the possible mechanisms. METHODS: TMZ-sensitive human U87-MG and murine GL261 glioma cells and TMZ-resistant human U87-MR-R9 glioma cells were exposed to honokiol and TMZ, and cell viability and LC50 of honokiol were assayed. To determine the death mechanisms, caspase-3 activity, DNA fragmentation, apoptotic cells, necrotic cells, cell cycle, and autophagic cells. The glioma cells were pretreated with 3-methyladenine (3-MA) and chloroquine (CLQ), two inhibitors of autophagy, and then exposed to honokiol or TMZ. RESULTS: Exposure of human U87-MG glioma cells to honokiol caused cell death and significantly enhanced TMZ-induced insults. As to the mechanism, combined treatment of human U87-MG cells with honokiol and TMZ induced greater caspase-3 activation, DNA fragmentation, cell apoptosis, and cell-cycle arrest at the G1 phase but did not affect cell necrosis. The improved effects of honokiol on TMZ-induced cell insults were further verified in mouse GL261 glioma cells. Moreover, exposure of drug-tolerant human U87-MG-R9 cells to honokiol induced autophagy and consequent apoptosis. Pretreatments with 3-MA and CLQ caused significant attenuations in honokiol- and TMZ-induced cell autophagy and apoptosis in human TMZ-sensitive and -tolerant glioma cells. CONCLUSIONS: Taken together, this study demonstrated the improved effects of honokiol with TMZ on autophagy and subsequent apoptosis of drug-sensitive and -tolerant glioma cells. Thus, honokiol has the potential to be a drug candidate for treating human gliomas.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Lignanos/farmacología , Temozolomida/farmacología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioma , Humanos
17.
Proc Natl Acad Sci U S A ; 112(47): E6562-70, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26554014

RESUMEN

The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cocaína/farmacología , Membrana Nuclear/metabolismo , Receptores sigma/metabolismo , Transcripción Genética/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Monoaminooxidasa/genética , Membrana Nuclear/efectos de los fármacos , Proteínas Nucleares/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Factor de Transcripción Sp3 , Síndrome de Abstinencia a Sustancias , Receptor Sigma-1
18.
Biochem Biophys Res Commun ; 493(1): 14-19, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28939040

RESUMEN

It has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated. Sp1 and stemness genes were not commonly overexpressed in clinical GBM samples. However, their expression was highly induced by stress stimuli. Using MA, we demonstrated Sp1 as a critical stemness-related transcriptional factor protecting GBM cells against stress- and TMZ-induced death. Thus, Sp1 inhibition may prevent recurrence of malignant cells persisting after primary therapy.


Asunto(s)
Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Factor de Transcripción Sp1/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones SCID , Células Madre Neoplásicas/patología , Estrés Oxidativo/efectos de los fármacos , Temozolomida , Resultado del Tratamiento
19.
Biochim Biophys Acta Proteins Proteom ; 1865(3): 336-343, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28012872

RESUMEN

Naloxone is an alkaloid antagonist that acts as an antidote to opioids through the mu-opioid receptor (MOR), a G protein-coupled receptor. However, its binding site on the MOR remains unknown. To investigate the binding interfaces necessary for naloxone and MOR, available structural information was combined with a cell-based photocrosslinking approach. Computer prediction revealed that four binding sites on MOR were required for naloxone binding. In addition, in the photocrosslinking approach, an amber stop codon was used to replace the sense codon of the MOR at 266 selected individual positions, in order to introduce the photoreactive amino acid p-benzoyl-l-phenylalanine (BzF) into MOR to evaluate the results of the computer analysis. The BzF-incorporated MOR mutant genes were expressed in CHO cells, in which MOR retained the ability to interact with its ligands, such as morphine, and exhibited MOR-dependent activation of ERK signaling following morphine stimulation. Notably, after treatment with tritium-labeled naloxone and exposure to UV light, we observed naloxone crosslinking with BzF replacement at hydrophobic residues and some polar/uncharged residues in the computer-predicted sites 1 and 3, indicating that these two sites in the MOR interact with naloxone. In conclusion, these results indicate that MOR has two naloxone binding sites and that the hydrophobic and polar/uncharged residues within these sites are important for naloxone binding.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Naloxona/metabolismo , Receptores Opioides mu/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Ligandos , Sistema de Señalización de MAP Quinasas/fisiología , Transducción de Señal/fisiología
20.
Anesthesiology ; 126(5): 952-966, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28212204

RESUMEN

BACKGROUND: The authors investigated the pharmacology and signaling pathways of the opioid receptors modulated by compound 1, 1-(2,4-dibromophenyl)-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one. METHODS: In vitro studies of compound 1 were assessed by using a radioligand-binding assay (n = 3), a cyclic adenosine monophosphate assay (n = 3), a ß-arrestin assay (n = 3), an internalization assay (n = 3), and an immunohistochemistry (n = 8). In vivo studies of compound 1 were characterized using a tail-flick test (n = 5 to 6), tail-clip test (n = 7), von Frey hair test (n = 5), and charcoal meal test (n = 5). RESULTS: Compound 1 elicited robust effects in µ-opioid (mean ± SD; binding affinity: 15 ± 2 nM; cyclic adenosine monophosphate assay: 24 ± 6 nM), δ-opioid (82 ± 7 nM; 1.9 ± 0.1 µM), and κ-opioid (76 ± 9 nM; 1.4 ± 0.5 µM) receptor-expressing cells. Compound 1 acts as a full agonist of ß-arrestin-2 recruitment in µ-opioid (1.1 ± 0.3 µM) and δ-opioid (9.7 ± 1.9 µM) receptor-expressing cells. Compound 1 caused less gastrointestinal dysfunction (charcoal meal test: morphine: 82 ± 5%; compound 1: 42 ± 5%) as well as better antinociception in mechanical pain hypersensitivity (tail-clip test: morphine: 10 ± 3 s; compound 1: 19 ± 1 s) and in cancer-induced pain (von Frey hair test: morphine: 0.1 ± 0.1 g; compound 1: 0.3 ± 0.1 g) than morphine at equi-antinociceptive doses. CONCLUSIONS: Compound 1 produced antinociception with less gastrointestinal dysfunction than morphine.


Asunto(s)
Enfermedades Gastrointestinales/inducido químicamente , Indazoles/farmacología , Morfina , Receptores Opioides/agonistas , Analgésicos Opioides/farmacología , Animales , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA