Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Genomics ; 23(1): 210, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35291951

RESUMEN

BACKGROUND: Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. RESULTS: In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. CONCLUSIONS: The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches.


Asunto(s)
Genómica , Streptococcus thermophilus , Humanos , Lactosa/metabolismo , Fenotipo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
2.
Food Microbiol ; 89: 103410, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32138982

RESUMEN

This study explores the ability of lactic acid bacteria (LAB) to ferment soy juice. The ability of 276 LAB strains from 25 species to ferment the principal soy carbohydrates, sucrose, raffinose or stachyose was tested in synthetic media and a soy juice. Fermented soy juices (FSJs) were characterized for their odor. Selected FSJs were characterized by targeted metabolomics. All Streptococcus, 83% of Leuconostoc and Lactobacillus and 41% of Lactococcus strains were sucrose-positive, while only 36% of all the LAB strains tested were raffinose-positive and 6% stachyose-positive. Nearly all (97%) the sucrose-positive strains fermented soy juice, indicating that an ability to use sucrose is a good criterion to select strains for soy juice fermentation. Among the most efficient acidifying strains, 46 FSJs had an odor deemed to be acceptable. FSJ composition was dependent on both species and strains: 17/46 strains deglycosylated soy juice isoflavones, the 27 S. thermophilus strains converted a mean 4.4 ± 0.1 g/L of sucrose into 3.0 ± 0.1 g/L of lactic acid versus 5.2 ± 0.1 g/L into 2.2 ± 0.1 g/L for the 18 Lactobacillus and one Lactococcus strains. This study highlights the diversity of the metabolic profiles of LAB strains in soy juice fermentation.


Asunto(s)
Fermentación , Alimentos Fermentados/microbiología , Jugos de Frutas y Vegetales/microbiología , Lactobacillales/metabolismo , Odorantes/análisis , Manipulación de Alimentos , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactococcus/metabolismo , Leuconostoc/metabolismo , Glycine max
3.
Curr Microbiol ; 76(10): 1095-1104, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31270565

RESUMEN

Fermented cereals are part of the main traditional diets of many people in Africa, usually obtained from artisanal production. The intensification of their manufacturing, responding to the consumers demand, requires a better control to ensure their sanitary, nutritional, and taste qualities, hence, the need of selecting accurate and safe starter cultures. In the present study, 48 lactic acid bacteria (LAB) strains, previously isolated from Algerian fermented wheat lemzeiet, were analyzed for different technological properties. 14 LAB strains, belonging to Pediococcus pentosaceus, Enterococcus faecium, Lactobacillus curvatus, Lactobacillus brevis, and Leuconostoc mesenteroides species, decreased rapidly the pH of the flour extract broth close to 4 or below. 91% of strains showed extracellular protease activity, but only 12% were amylolytics. 18 LAB strains inhibited or postponed the growth of three fungal targets Rhodotorula mucilaginosa UBOCC-A-216004, Penicillium verrucosum UBOCC-A-109221, and Aspergillus flavus UBOCC-A-106028. The strains belonging to Lactobacillus spp., Leuconostoc fallax, L. mesenteroides, and Weissella paramesenteroides were the most antifungal ones. Multiplex PCR for biogenic amines' production did not reveal any of the genes involved in the production of putrescine, histamine, and tyramine for 17 of the 48 strains. The obtained results provided several candidates for use as starter culture in the future production of lemzeiet.


Asunto(s)
Alimentos Fermentados/microbiología , Microbiología de Alimentos , Lactobacillales/aislamiento & purificación , Lactobacillales/metabolismo , Triticum/microbiología , Amilasas/metabolismo , Antifúngicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Aminas Biogénicas/biosíntesis , ADN Bacteriano/genética , Fermentación , Concentración de Iones de Hidrógeno , Lactobacillales/enzimología , Lactobacillales/genética , Péptido Hidrolasas/metabolismo
4.
Appl Microbiol Biotechnol ; 100(5): 2335-46, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685674

RESUMEN

New strains are desirable to diversify flavour of fermented dairy products. The objective of this study was to evaluate the potential of Leuconostoc spp. and Lactobacillus spp. in the production of aroma compounds by metabolic fingerprints of volatiles. Eighteen strains, including five Lactobacillus species (Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus sakei) and three Leuconostoc species (Leuconostoc citreum, Leuconostoc lactis, and Leuconostoc mesenteroides) were incubated for 5 weeks in a curd-based slurry medium under conditions mimicking cheese ripening. Populations were enumerated and volatile compounds were analysed by headspace trap gas chromatography-mass spectrometry (GC-MS). A metabolomics approach followed by multivariate statistical analysis was applied for data processing and analysis. In total, 12 alcohols, 10 aldehydes, 7 esters, 11 ketones, 5 acids and 2 sulphur compounds were identified. Very large differences in concentration of volatile compounds between the highest producing strains and the control medium were observed in particular for diacetyl, 2-butanol, ethyl acetate, 3-methylbutanol, 3-methylbutanoic acid and 2-methylbutanoic acid. Some of the characterized strains demonstrated an interesting aromatizing potential to be used as adjunct culture.


Asunto(s)
Queso/microbiología , Lactobacillus/química , Leuconostoc/química , Compuestos Orgánicos Volátiles/análisis , Carga Bacteriana , Medios de Cultivo/química , Lactobacillus/crecimiento & desarrollo , Leuconostoc/crecimiento & desarrollo , Metabolómica , Modelos Biológicos
5.
BMC Genomics ; 16: 296, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25886522

RESUMEN

BACKGROUND: Propionibacterium freudenreichii (PF) is an actinobacterium used in cheese technology and for its probiotic properties. PF is also extremely adaptable to several ecological niches and can grow on a variety of carbon and nitrogen sources. The aim of this work was to discover the genetic basis for strain-dependent traits related to its ability to use specific carbon sources. High-throughput sequencing technologies were ideal for this purpose as they have the potential to decipher genomic diversity at a moderate cost. RESULTS: 21 strains of PF were sequenced and the genomes were assembled de novo. Scaffolds were ordered by comparison with the complete reference genome CIRM-BIA1, obtained previously using traditional Sanger sequencing. Automatic functional annotation and manual curation were performed. Each gene was attributed to either the core genome or an accessory genome. The ability of the 21 strains to degrade 50 different sugars was evaluated. Thirty-three sugars were degraded by none of the sequenced strains whereas eight sugars were degraded by all of them. The corresponding genes were present in the core genome. Lactose, melibiose and xylitol were only used by some strains. In this case, the presence/absence of genes responsible for carbon uptake and degradation correlated well with the phenotypes, with the exception of xylitol. Furthermore, the simultaneous presence of these genes was in line the metabolic pathways described previously in other species. We also considered the genetic origin (transduction, rearrangement) of the corresponding genomic islands. Ribose and gluconate were degraded to a greater or lesser extent (quantitative phenotype) by some strains. For these sugars, the phenotypes could not be explained by the presence/absence of a gene but correlated with the premature appearance of a stop codon interrupting protein synthesis and preventing the catabolism of corresponding carbon sources. CONCLUSION: These results illustrate (i) the power of correlation studies to discover the genetic basis of binary strain-dependent traits, and (ii) the plasticity of PF chromosomes, probably resulting from horizontal transfers, duplications, transpositions and an accumulation of mutations. Knowledge of the genetic basis of nitrogen and sugar degradation opens up new strategies for the screening of PF strain collections to enable optimum cheese starter, probiotic and white biotechnology applications.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Genoma Bacteriano , Islas Genómicas/genética , Propionibacterium/genética , Queso/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Mutación , Nitratos/metabolismo , Fenotipo , Filogenia , Propionibacterium/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie
6.
Food Microbiol ; 46: 145-153, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475278

RESUMEN

Microorganisms play an important role in the development of cheese flavor. The aim of this study was to develop an approach to facilitate screening of various cheese-related bacteria for their ability to produce aroma compounds. We combined i) curd-based slurry medium incubated under conditions mimicking cheese manufacturing and ripening, ii) powerful method of extraction of volatiles, headspace trap, coupled to gas chromatography-mass spectrometry (HS-trap-GC-MS), and iii) metabolomics-based method of data processing using the XCMS package of R software and multivariate analysis. This approach was applied to eleven species: five lactic acid bacteria (Leuconostoc lactis, Lactobacillus sakei, Lactobacillus paracasei, Lactobacillus fermentum, and Lactobacillus helveticus), four actinobacteria (Brachybacterium articum, Brachybacterium tyrofermentans, Brevibacterium aurantiacum, and Microbacterium gubbeenense), Propionibacterium freudenreichii, and Hafnia alvei. All the strains grew, with maximal populations ranging from 7.4 to 9.2 log (CFU/mL). In total, 52 volatile aroma compounds were identified, of which 49 varied significantly in abundance between bacteria. Principal component analysis of volatile profiles differentiated species by their ability to produce ethyl esters (associated with Brachybacteria), sulfur compounds and branched-chain alcohols (H. alvei), branched-chain acids (H. alvei, P. freudenreichii and L. paracasei), diacetyl and related carbonyl compounds (M. gubbeenense and L. paracasei), among others.


Asunto(s)
Bacterias/metabolismo , Queso/microbiología , Aromatizantes/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Queso/análisis , Aromatizantes/química
7.
Appl Environ Microbiol ; 80(2): 751-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24242250

RESUMEN

Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1(T) for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.


Asunto(s)
Queso/microbiología , Esterasas/metabolismo , Lipólisis , Propionibacterium/enzimología , Esterasas/genética , Microbiología de Alimentos , Técnicas de Inactivación de Genes , Variación Genética , Datos de Secuencia Molecular , Propionibacterium/genética
8.
Curr Microbiol ; 68(4): 551-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24362553

RESUMEN

We propose a new method that allows accurate discrimination of Lactobacillus helveticus from other closely related homofermentative lactobacilli, especially Lactobacillus gallinarum. This method is based on the amplification by PCR of two peptidoglycan hydrolytic genes, Lhv_0190 and Lhv_0191. These genes are ubiquitous and show high homology at the intra-species level. The PCR method gave two specific PCR products, of 542 and 747 bp, for 25 L. helveticus strains coming from various sources. For L. gallinarum, two amplicons were obtained, the specific 542 bp amplicon and another one with a size greater than 1,500 bp. No specific PCR products were obtained for 12 other closely related species of lactobacilli, including the L. acidophilus complex, L. delbrueckii, and L. ultunensis. The developed PCR method provided rapid, precise, and easy identification of L. helveticus. Moreover, it enabled differentiation between the two closely phylogenetically related species L. helveticus and L. gallinarum.


Asunto(s)
Lactobacillus/enzimología , Lactobacillus/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , Marcadores Genéticos/genética , Filogenia
9.
ISME Commun ; 4(1): ycad019, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38415201

RESUMEN

The human milk (HM) microbiota, a highly diverse microbial ecosystem, is thought to contribute to the health benefits associated with breast-feeding, notably through its impact on infant gut microbiota. Our objective was to further explore the role of HM bacteria on gut homeostasis through a "disassembly/reassembly" strategy. HM strains covering the diversity of HM cultivable microbiota were first characterized individually and then assembled in synthetic bacterial communities (SynComs) using two human cellular models, peripheral blood mononuclear cells and a quadricellular model mimicking intestinal epithelium. Selected HM bacteria displayed a large range of immunomodulatory properties and had variable effects on epithelial barrier, allowing their classification in functional groups. This multispecies characterization of HM bacteria showed no clear association between taxonomy and HM bacteria impacts on epithelial immune and barrier functions, revealing the entirety and complexity of HM bacteria potential. More importantly, the assembly of HM strains into two SynComs of similar taxonomic composition but with strains exhibiting distinct individual properties, resulted in contrasting impacts on the epithelium. These impacts of SynComs partially diverged from the predicted ones based on individual bacteria. Overall, our results indicate that the functional properties of the HM bacterial community rather than the taxonomic composition itself could play a crucial role in intestinal homeostasis of infants.

10.
Front Microbiol ; 14: 1323424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38163080

RESUMEN

Fermentation is an ancient practice of food preservation. Fermented vegetables are popular in Eastern European and Asian countries. They have received a growing interest in Western countries, where they are mainly manufactured at domestic and artisanal scales and poorly characterized. Our aim was to investigate the microbial communities and the safety of French homemade fermented vegetables, in the frame of a citizen science project. Fermented vegetables and the data associated with their manufacture were collected from citizens and characterized for pH, NaCl concentration, and microbiology by culturomics and 16S DNA metabarcoding analysis. Lactic acid bacteria (LAB) and yeast isolates were identified by 16S rRNA gene sequencing and D1/D2 domains of the large subunit of the rRNA gene, respectively. The 75 collected samples contained 23 types of vegetables, mainly cabbage, followed by carrots and beets, and many mixtures of vegetables. They were 2 weeks to 4 years old, and their median pH was 3.56, except for two samples with a pH over 4.5. LAB represented the dominant viable bacteria. LAB concentrations ranged from non-detectable values to 8.7 log colony-forming units (CFU)/g and only depended on the age of the samples, with the highest most frequently observed in the youngest samples (<100 days). The 93 LAB isolates identified belonged to 23 species, the two mains being Lactiplantibacillus pentosus/plantarum and Levilactobacillus brevis. The other microbial groups enumerated (total aerobic bacteria, halotolerant bacteria, Gram-negative bacteria, and acetic acid bacteria) generally showed lower concentrations compared to LAB concentrations. No pathogenic bacteria were detected. Viable yeasts were observed in nearly half the samples, at concentrations reaching up to 8.0 log CFU/g. The 33 yeast clones identified belonged to 16 species. Bacterial metabarcoding showed two main orders, namely, Lactobacillales (i.e., LAB, 79% of abundance, 177 of the 398 total ASVs) and Enterobacterales (19% of abundance, 191 ASVs). Fifteen LAB genera were identified, with Lactiplantibacillus and Levilactobacillus as the most abundant, with 41 and 12% of total reads, respectively. Enterobacterales members were mainly represented by Enterobacteriaceae and Yersiniaceae. This study is the first wide description of the microbiota of a large variety of homemade fermented vegetables and documents their safety.

11.
Microorganisms ; 8(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629873

RESUMEN

Gwell is a traditional mesophilic fermented milk from the Brittany region of France. The fermentation process is based on a back-slopping method. The starter is made from a portion of the previous Gwell production, so that Gwell is both the starter and final product for consumption. In a participatory research framework involving 13 producers, Gwell was characterized from both the sensory and microbial points of view and was defined by its tangy taste and smooth and dense texture. The microbial community of typical Gwell samples was studied using both culture-dependent and culture-independent approaches. Lactococcus lactis was systematically identified in Gwell, being represented by both subspecies cremoris and lactis biovar diacetylactis which were always associated. Geotrichum candidum was also found in all the samples. The microbial composition was confirmed by 16S and ITS2 metabarcoding analysis. We were able to reconstruct the history of Gwell exchanges between producers, and thus obtained the genealogy of the samples we analyzed. The samples clustered in two groups which were also differentiated by their microbial composition, and notably by the presence or absence of yeasts identified as Kazachstania servazii and Streptococcus species.

12.
Int J Food Microbiol ; 291: 17-24, 2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30428422

RESUMEN

Lactobacillus, Pediococcus, Oenococcus and Leuconostoc are the main Lactic Acid Bacteria (LAB) genera present in cider as they are able to survive this hostile environment. LAB play a significant role in cider quality, for example in the process of malolactic fermentation, even though they can also be involved in spoilage of cider (production of biogenic amines, exopolysaccharides, off-flavours…). In this context a better monitoring of the fermentation process is a matter of interest to guarantee cider quality. In the present study, we designed a genus-specific multiplex PCR for a rapid and simultaneous detection of the four main LAB genera involved in cider production. This multiplex PCR worked equally with purified genomic DNA of bacterial isolates and with colonies directly picked from agar plates. This new PCR method was also successfully extended to wine and dairy isolates, and thus constitutes an effective tool to quickly identify LAB associated with fermented foods. Moreover, many biodiversity studies would also benefit from this fast, cheap and reliable identification method.


Asunto(s)
Bebidas Alcohólicas/microbiología , Alimentos Fermentados/microbiología , Microbiología de Alimentos/métodos , Lactobacillales/genética , Reacción en Cadena de la Polimerasa Multiplex , Bebidas Alcohólicas/normas , Fermentación , Lactobacillales/clasificación , Lactobacillus/genética , Leuconostoc/genética , Oenococcus/genética , Pediococcus/genética , Vino/microbiología
13.
Microb Genom ; 3(9): e000126, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-29114404

RESUMEN

Lactobacillus salivarius, found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L. salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.


Asunto(s)
Microbioma Gastrointestinal/genética , Ligilactobacillus salivarius/genética , ARN Bacteriano/genética , ARN Largo no Codificante/genética , Animales , Perfilación de la Expresión Génica , Humanos , Ratones , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
14.
Sci Rep ; 7: 46409, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406170

RESUMEN

Propionibacterium freudenreichii, a dairy starter, can reach a population of almost 109 propionibacteria per gram in Swiss-type cheese at the time of consumption. Also consumed as a probiotic, it displays strain-dependent anti-inflammatory properties mediated by surface proteins that induce IL-10 in leukocytes. We selected 23 strains with varied anti-inflammatory potentials in order to identify the protein(s) involved. After comparative genomic analysis, 12 of these strains were further analysed by surface proteomics, eight of them being further submitted to transcriptomics. The omics data were then correlated to the anti-inflammatory potential evaluated by IL-10 induction. This comparative omics strategy highlighted candidate genes that were further subjected to gene-inactivation validation. This validation confirmed the contribution of surface proteins, including SlpB and SlpE, two proteins with SLH domains known to mediate non-covalent anchorage to the cell-wall. Interestingly, HsdM3, predicted as cytoplasmic and involved in DNA modification, was shown to contribute to anti-inflammatory activity. Finally, we demonstrated that a single protein cannot explain the anti-inflammatory properties of a strain. These properties therefore result from different combinations of surface and cytoplasmic proteins, depending on the strain. Our enhanced understanding of the molecular bases for immunomodulation will enable the relevant screening for bacterial resources with anti-inflammatory properties.


Asunto(s)
Antiinflamatorios/metabolismo , Queso/microbiología , Perfilación de la Expresión Génica/métodos , Propionibacterium freudenreichii/aislamiento & purificación , Proteómica/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Humanos , Interleucina-10/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Filogenia , Propionibacterium freudenreichii/clasificación , Propionibacterium freudenreichii/genética , Propionibacterium freudenreichii/inmunología
15.
Int J Food Microbiol ; 226: 13-9, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27015297

RESUMEN

Lactobacillus sanfranciscensis is the predominant key lactic acid bacterium in traditionally fermented sourdoughs. Despite its prevalence, sourdough and their related breads could be different regarding their physicochemical and sensorial characteristics. The intraspecific diversity of L. sanfranciscensis might explain these observations. Fifty-nine strains isolated from French sourdoughs were typed by a polyphasic approach including Multilocus Sequence Typing (MLST) and Pulsed-field Gel Electrophoresis (PFGE), in order to study their genotypic diversity. MLST scheme can be reduced from six to four gene fragments (gdh, gyrA, nox and pta) without a major loss of discrimination between strains. The genes mapA and pgmA are not good candidates for inclusion in an MLST scheme to type L. sanfranciscensis strains, as they could not be amplified for a set of 18 strains among the 59 studied. This method revealed 20 sequence types (STs). Of these, 19 STs were grouped in one clonal complex, showing a strong relatedness between these strains. PFGE using SmaI discriminated 41 pulsotypes and so distinguished isolates better than the MLST scheme. Both genotypic methods indicate a low diversity between strains isolated from the same sourdough and a higher diversity between strains isolated from different sourdoughs, suggesting an influence of baker practices and/or environmental conditions on the selection of strains. The use of these two methods targeting genetic variations gives an optimal genotypic characterization of L.sanfranciscensis strains.


Asunto(s)
Pan/microbiología , Microbiología de Alimentos , Variación Genética , Lactobacillus/genética , Electroforesis en Gel de Campo Pulsado , Fermentación , Genotipo , Tipificación de Secuencias Multilocus
16.
Stand Genomic Sci ; 11: 6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26779303

RESUMEN

Propionibacterium freudenreichii belongs to the class Actinobacteria (Gram positive with a high GC content). This "Generally Recognized As Safe" (GRAS) species is traditionally used as (i) a starter for Swiss-type cheeses where it is responsible for holes and aroma production, (ii) a vitamin B12 and propionic acid producer in white biotechnologies, and (iii) a probiotic for use in humans and animals because of its bifidogenic and anti-inflammatory properties. Until now, only strain CIRM-BIA1T had been sequenced, annotated and become publicly available. Strain CIRM-BIA129 (commercially available as ITG P20) has considerable anti-inflammatory potential. Its gene content was compared to that of CIRM-BIA1 T. This strain contains 2384 genes including 1 ribosomal operon, 45 tRNA and 30 pseudogenes.

17.
Mol Nutr Food Res ; 60(4): 935-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26640113

RESUMEN

SCOPE: Inflammatory bowel disease (IBD) constitutes a growing public health concern in western countries. Bacteria with anti-inflammatory properties are lacking in the dysbiosis accompanying IBD. Selected strains of probiotic bacteria with anti-inflammatory properties accordingly alleviate symptoms and enhance treatment of ulcerative colitis in clinical trials. Such properties are also found in selected strains of dairy starters such as Propionibacterium freudenreichii and Lactobacillus delbrueckii (Ld). We thus investigated the possibility to develop a fermented dairy product, combining both starter and probiotic abilities of both lactic acid and propionic acid bacteria, designed to extend remissions in IBD patients. METHODS AND RESULTS: We developed a single-strain Ld-fermented milk and a two-strain P. freudenreichii and Ld-fermented experimental pressed cheese using strains previously selected for their anti-inflammatory properties. Consumption of these experimental fermented dairy products protected mice against trinitrobenzenesulfonic acid induced colitis, alleviating severity of symptoms, modulating local and systemic inflammation, as well as colonic oxidative stress and epithelial cell damages. As a control, the corresponding sterile dairy matrix failed to afford such protection. CONCLUSION: This work reveals the probiotic potential of this bacterial mixture, in the context of fermented dairy products. It opens new perspectives for the reverse engineering development of anti-inflammatory fermented foods designed for target populations with IBD, and has provided evidences leading to an ongoing pilot clinical study in ulcerative colitis patients.


Asunto(s)
Queso/microbiología , Microbioma Gastrointestinal , Lactobacillus delbrueckii/inmunología , Probióticos/farmacología , Propionibacterium freudenreichii/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Biomarcadores/sangre , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Femenino , Fermentación , Lactobacillus delbrueckii/genética , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Propionibacterium freudenreichii/genética , Ácido Trinitrobencenosulfónico/toxicidad
18.
Methods Mol Biol ; 1301: 241-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25862061

RESUMEN

Pulsed-field gel electrophoresis (PFGE) is a technique using alternating electric fields to help the separation of high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and of applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragment. This method is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair.


Asunto(s)
Dermatoglifia del ADN/métodos , Electroforesis en Gel de Campo Pulsado/métodos , Leuconostoc/genética , Cromosomas Bacterianos/genética , Enzimas de Restricción del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Leuconostoc/clasificación , Leuconostoc/aislamiento & purificación
19.
Methods Mol Biol ; 1301: 265-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25862063

RESUMEN

Pulsed field gel electrophoresis (PFGE) is a technique using alternating electric fields to migrate high molecular weight DNA fragments with a high resolution. This method consists of the digestion of bacterial chromosomal DNA with rare-cutting restriction enzymes and in applying an alternating electrical current between spatially distinct pairs of electrodes. DNA molecules migrate at different speeds according to the size of the fragments. Among other things, this technique is considered as the "gold standard" for genotyping, genetic fingerprinting, epidemiological studies, genome size estimation, and studying radiation-induced DNA damage and repair. This chapter describes a PFGE method that can be used to differentiate dairy propionibacteria.


Asunto(s)
Productos Lácteos/microbiología , Electroforesis en Gel de Campo Pulsado/métodos , Propionibacterium/genética , Dermatoglifia del ADN/métodos , ADN Bacteriano/genética , Propionibacterium/clasificación , Propionibacterium/aislamiento & purificación
20.
Dairy Sci Technol ; 95(4): 465-477, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097645

RESUMEN

Propionibacterium freudenreichii is widely used in Swiss-type cheese manufacture, where it contributes to flavour and eye development. It is currently divided into two subspecies, according to the phenotype for lactose fermentation and nitrate reduction (lac+/nit- and lac-/nit+ for P. freudenreichii subsp. shermanii and subsp. freudenreichii, respectively). However, the existence of unclassifiable strains (lac+/nit+ and lac-/nit-) has also been reported. The aim of this study was to revisit the relevance of the subdivision of P. freudenreichii into subspecies, by confirming the existence of unclassifiable strains. Relevant conditions to test the ability of P. freudenreichii for lactose fermentation and nitrate reduction were first determined, by using 10 sequenced strains, in which the presence or absence of the lactose and nitrate genomic islands were known. We also determined whether the subdivision based on lac/nit phenotype was related to other phenotypic properties of interest in cheese manufacture, in this case, the production of aroma compounds, analysed by gas chromatography-mass spectrometry, for a total of 28 strains. The results showed that a too short incubation time can lead to false negative for lactose fermentation and nitrate reduction. They confirmed the existence of four lac/nit phenotypes instead of the two expected, thus leading to 13 unclassifiable strains out of the 28 characterized (7 lac+/nit+ and 6 lac-/nit-). The production of the 15 aroma compounds detected in all cultures varied more within a lac/nit phenotype (up to 20 times) than between them. Taken together, these results demonstrate that the division of P. freudenreichii into two subspecies does not appear to be relevant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA