Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Health Sci (Qassim) ; 17(3): 3-10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151745

RESUMEN

Objectives: In this study, we implemented a structure-based virtual screening protocol in search of natural bioactive compounds in Clitoria ternatea that could inhibit the viral Mpro. Methods: A library of twelve main bioactive compounds in C. ternatea was created from PubChem database by minimizing ligand structure in PyRx software to increase the ligand flexibility. Molecular docking studies were performed by targeting Mpro (PDB ID: 6lu7) via Discovery Studio Visualiser and PyRx platforms. Top hits compounds were then selected to study their Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug likeness properties through pkCSM pharmacokinetics tool to understand the stability, interaction, conformational changes, and pharmaceutical relevant parameters. Results: This investigation found that, in the molecular docking simulation, four bioactive compounds (procyanidin A2 [-9.3 kcal/mol], quercetin-3-rutinoside [-8.9 kcal/mol], delphinidin-3-O-glucoside [-8.3 kcal/mol], and ellagic acid [-7.4 kcal/mol]) showed producing the strongest binding affinity to the Mpro of severe acute respiratory syndrome coronavirus 2, as compared to positive control (N3 inhibitor) (-7.5 kcal/mol). These binding energies were found to be favorable for an efficient docking and resultant. In addition, the stability of quercetin-3-rutinoside and ellagic acid is higher without any unfavorable bond. The ADMET and drug likeness of these two compounds were found that they are considered an effective and safe coronavirus disease 2019 (COVID-19) inhibitors through Lipinski's Rule, absorption, distribution, metabolism, and toxicity properties. Conclusion: From these results, it was concluded that C. ternatea possess potential therapeutic properties against COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA