Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 88(13): 8099-8113, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285286

RESUMEN

Herein, we present the iron-catalyzed oxidative cyclization of alcohol/methyl arene with 2-amino styrene to synthesize polysubstituted quinoline. Low-oxidation level substrates such as alcohols and methyl arenes are converted to aldehydes in the presence of an iron catalyst and di-t-butyl peroxide. Then, the quinoline scaffold is synthesized through imine condensation/radical cyclization/oxidative aromatization. Our protocol showed a broad substrate scope, and various functionalization and fluorescence applications of quinoline products demonstrated its synthetic ability.


Asunto(s)
Quinolinas , Estirenos , Ciclización , Alcoholes , Hierro , Catálisis , Estrés Oxidativo
2.
J Org Chem ; 87(24): 16378-16389, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36417466

RESUMEN

α-Alkyl and α-olefin nitriles are very important for organic synthesis and medicinal chemistry. However, different types of catalysts are employed to achieve either α-alkylation of nitriles by borrowing hydrogen or α-olefination by dehydrogenative coupling methods. Designing and developing high-performance earth-abundant catalysts that can procure different products from the same starting materials remain a great challenge. Herein, we report an iron(0) catalyst system that achieves chemoselectivity between borrowing hydrogen and dehydrogenative coupling protocols by simply changing the base. A broad range of nitriles and alcohols, including benzylic, linear aliphatic, cycloaliphatic, heterocyclic, and allylic alcohols, were selectively and efficiently converted to the corresponding products. Mechanistic studies reveal that the reaction mechanism proceeds through a dehydrogenative pathway. This iron catalytic protocol is environmentally benign and atom-efficient with the liberation of H2 and H2O as green byproducts.


Asunto(s)
Alcoholes , Hidrógeno , Hierro , Alquilación , Catálisis , Nitrilos
3.
J Org Chem ; 86(11): 7390-7402, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34028267

RESUMEN

Herein, we describe the direct synthesis of pyrrolo[1,2-α]quinoxaline via oxidative coupling between methyl arene and 1-(2-aminophenyl) pyrroles. Oxidation of the benzylic carbon of the methyl arene was achieved by di-t-butyl peroxide in the presence of an iron catalyst, followed by conversion to an activated aldehyde in situ. Oxygen played a crucial role in the oxidation process to accelerate benzaldehyde formation. Subsequent Pictet-Spengler-type annulation completed the quinoxaline structure. The protocol tolerated various kinds of functional groups and provided 22 4-aryl pyrrolo[1,2-α]quinoxalines when various methyl arene derivatives were used. The developed method proceeded in air, and all catalysts, reagents, and solvents were easily accessible.


Asunto(s)
Hierro , Quinoxalinas , Catálisis , Estructura Molecular , Acoplamiento Oxidativo
4.
J Nat Prod ; 84(4): 1366-1372, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33734713

RESUMEN

Gaylussacin (1), a stilbene glucoside, has been isolated from Pentarhizidium orientale and is used in Korean folk medicine. Although it was first isolated in 1972, the synthesis of gaylussacin has never been reported. Herein, we report the first total synthesis of gaylussacin in six steps with an overall yield of 23.8%, as well as the synthesis of its derivatives. Structurally, gaylussacin contains a carboxylic acid and a glycoside along with a free phenol on the same benzene ring, making selective functionalization for the synthesis of 1 difficult. Heck cross-coupling was employed as a key step to introduce the stilbene moiety. Glycosylation followed by global deprotection provided natural product 1.


Asunto(s)
Glucósidos/síntesis química , Estilbenos/síntesis química , Glicósidos/química , Glicosilación , Estructura Molecular
5.
J Org Chem ; 85(23): 15314-15324, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33119283

RESUMEN

Herein, we describe novel iron-catalyzed transfer hydrogenation between alcohols and 1-(2-nitrophenyl)pyrroles for the synthesis of pyrrolo[1,2-α]quinoxalines. The tricarbonyl (η4-cyclopentadienone) iron complex catalyzed the oxidation of alcohols and the reduction of nitroarenes, and the corresponding aldehydes and aniline were generated in situ. The resulting Pictet-Spengler-type annulation/oxidation completed the quinoxaline structure formation. The protocol tolerated various kinds of functional groups and provided 29 samples of 4-substituted pyrrolo[1,2-α]quinoxalines. The developed method was also applied for the synthesis of additional polyheterocycles.

6.
J Org Chem ; 85(23): 15396-15405, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33136394

RESUMEN

The iron-catalyzed hydrogen transfer strategy has been applied to the redox condensation of o-hydroxynitrobenzene with alcohol, leading to the formation of benzoxazole derivatives. A wide range of 2-substituted benzoxazoles were synthesized in good to excellent yields without the addition of an external redox agent. A series of control experiments provided a plausible mechanism. Furthermore, the reaction system was successfully extended to the synthesis of benzothiazoles and benzimidazoles.

7.
Org Biomol Chem ; 18(28): 5435-5441, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32633314

RESUMEN

Herein, we describe the direct synthesis of quinazolinones via cross-dehydrogenative coupling between methyl arenes and anthranilamides. The C-H functionalization of the benzylic sp3 carbon is achieved by di-t-butyl peroxide under air, and the subsequent amination-aerobic oxidation process completes the annulation process. Iron catalyzed the whole reaction process and various kinds of functional groups were tolerated under the reaction conditions, providing 31 examples of 2-aryl quinazolinones using methyl arene derivatives in yields of 57-95%. The synthetic potential has been demonstrated by the additional synthesis of aryl-containing heterocycles.

8.
J Med Chem ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151060

RESUMEN

As an obstinate cancer pancreatic cancer (PC) poses a major challenge due to limited treatment options which include resection surgery, radiation therapy, and gemcitabine-based chemotherapy. In cancer cells, protein kinase C ßI (PKCßI) participates in diverse cellular processes, including cell proliferation, invasion, and apoptotic pathways. In the present study, we created a scaffold to develop PKCßI inhibitors using evodiamine-based synthetic molecules. Among the candidate inhibitors, Evo312 exhibited the highest antiproliferative efficacy against PC cells, PANC-1, and acquired gemcitabine-resistant PC cells, PANC-GR. Additionally, Evo312 robustly inhibited PKCßI activity. Mechanistically, Evo312 effectively suppressed the upregulation of PKCßI protein expression, leading to the induction of cell cycle arrest and apoptosis in PANC-GR cells. Furthermore, Evo312 exerted an antitumor activity in a PANC-GR cell-implanted xenograft mouse model. These findings position Evo312 as a promising lead compound for overcoming gemcitabine resistance in PC through novel mechanisms.

9.
RSC Adv ; 11(30): 18225-18230, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35480939

RESUMEN

Here, we report iron-catalyzed one-pot synthesis of quinoxalines via transfer hydrogenative condensation of 2-nitroanilines with vicinal diols. The tricarbonyl (η4-cyclopentadienone) iron complex, which is well known as the Knölker complex, catalyzed the oxidation of alcohols and the reduction of nitroarenes, and the corresponding carbonyl and 1,2-diaminobenzene intermediates were generated in situ. Trimethylamine N-oxide was used to activate the iron complex. Various unsymmetrical and symmetrical vicinal diols were applied for transfer hydrogenation, resulting in quinoxaline derivatives in 49-98% yields. A plausible mechanism was proposed based on a series of control experiments. The major advantages of this protocol are that no external redox reagents or additional base is needed and that water is liberated as the sole byproduct.

10.
Front Chem ; 8: 429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637390

RESUMEN

Benzimidazoles are important N-heteroaromatic compounds with various biological activities and pharmacological applications. Herein, we present the first iron-catalyzed selective synthesis of 1,2-disubstituted benzimidazoles via acceptorless dehydrogenative coupling of primary alcohols with aromatic diamines. The tricarbonyl (η4-cyclopentadienone) iron complex catalyzed dehydrogenative cyclization, releasing water and hydrogen gas as by-products. The earth abundance and low toxicity of iron metal enable the provision of an eco-friendly and efficient catalytic method for the synthesis of benzimidazoles.

11.
Org Lett ; 22(21): 8382-8386, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33058675

RESUMEN

Herein, we describe the iron(III)-catalyzed oxidative coupling of alcohol/methyl arene with 2-amino phenyl ketone to synthesize 4-quinolone. Alcohols and methyl arenes are oxidized to the aldehyde in the presence of an iron catalyst and di-tert-butyl peroxide, followed by a tandem process, condensation with amine/Mannich-type cyclization/oxidation, to complete the 4-quinolone ring. This method tolerates various kinds of functional groups and provides a direct approach to the synthesis of 4-quinolones from less functionalized substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA