Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Subcell Biochem ; 103: 31-44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120463

RESUMEN

Age-related chronic inflammation is characterized as the unresolved low-grade inflammatory process underlying the ageing process and various age-related diseases. In this chapter, we review the age-related changes in the oxidative stress-sensitive pro-inflammatory NF-κB signaling pathways causally linked with chronic inflammation during ageing based on senoinflammation schema. We describe various age-related dysregulated pro- and anti-inflammatory cytokines, chemokines, and senescence-associated secretory phenotype (SASP), and alterations of inflammasome, specialized pro-resolving lipid mediators (SPM), and autophagy as major players in the chronic inflammatory intracellular signaling network. A better understanding of the molecular, cellular, and systemic mechanisms involved in chronic inflammation in the ageing process would provide further insights into the potential anti-inflammatory strategies.


Asunto(s)
Senescencia Celular , Transducción de Señal , Humanos , Estrés Oxidativo , Inflamación/metabolismo , FN-kappa B/metabolismo
2.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930952

RESUMEN

Based on the fact that substances with a ß-phenyl-α,ß-unsaturated carbonyl (PUSC) motif confer strong tyrosinase inhibitory activity, benzylidene-3-methyl-2-thioxothiazolidin-4-one (BMTTZD) analogs 1-8 were prepared as potential tyrosinase inhibitors. Four analogs (1-3 and 5) inhibited mushroom tyrosinase strongly. Especially, analog 3 showed an inhibitory effect that was 220 and 22 times more powerful than kojic acid in the presence of l-tyrosine and l-dopa, respectively. A kinetic study utilizing mushroom tyrosinase showed that analogs 1 and 3 competitively inhibited tyrosinase, whereas analogs 2 and 5 inhibited tyrosinase in a mixed manner. A docking simulation study indicated that analogs 2 and 5 could bind to both the tyrosinase active and allosteric sites with high binding affinities. In cell-based experiments using B16F10 cells, analogs 1, 3, and 5 effectively inhibited melanin production; their anti-melanogenic effects were attributed to their ability to inhibit intracellular tyrosinase activity. Moreover, analogs 1, 3, and 5 inhibited in situ B16F10 cellular tyrosinase activity. In three antioxidant experiments, analogs 2 and 3 exhibited strong antioxidant efficacy, similar to that of the positive controls. These results suggest that the BMTTZD analogs are promising tyrosinase inhibitors for the treatment of hyperpigmentation-related disorders.


Asunto(s)
Agaricales , Antioxidantes , Inhibidores Enzimáticos , Melaninas , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Agaricales/enzimología , Animales , Antioxidantes/farmacología , Antioxidantes/química , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Melaninas/antagonistas & inhibidores , Melaninas/biosíntesis , Tiazolidinas/química , Tiazolidinas/farmacología , Línea Celular Tumoral , Cinética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/química , Pironas
3.
Cell Commun Signal ; 21(1): 215, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596656

RESUMEN

BACKGROUND: Toll-like receptor 7 (TLR7) is an endosomal TLR activated by single-stranded RNA, including endogenous microRNAs. Although TLR7 is known to promote inflammatory responses in pathophysiological conditions, its role in renal fibrosis has not been investigated. Here, we aim to investigate the inflammatory roles of TLR7 in kidney inflammation and fibrosis. METHODS: TLR7 knockout mice (Tlr7 -/-) subjected to AD-induced kidney injury were utilized to examine the role of TLR7 in kidney fibrosis. To elucidate the role of TLR7 in renal epithelial cells, NRK52E rat renal tubule epithelial cells were employed. RESULTS: Under fibrotic conditions induced by an adenine diet (AD), TLR7 was significantly increased in damaged tubule epithelial cells, where macrophages were highly infiltrated. TLR7 deficiency protected against AD-induced tubular damage, inflammation, and renal fibrosis. Under in vitro conditions, TLR7 activation increased NF-κB activity and induced chemokine expression, whereas TLR7 inhibition effectively blocked NF-κB activation. Furthermore, among the known TLR7 endogenous ligands, miR-21 was significantly upregulated in the tubular epithelial regions. In NRK52E cells, miR-21 treatment induced pro-inflammatory responses, which could be blocked by a TLR7 inhibitor. When the TLR7 inhibitor, M5049, was administered to the AD-induced renal fibrosis model, TLR7 inhibition significantly attenuated AD-induced renal inflammation and fibrosis. CONCLUSIONS: Overall, activation of TLR7 by endogenous miR-21 in renal epithelial cells contributes to inflammatory responses in a renal fibrosis model, suggesting a possible therapeutic target for the treatment of renal fibrosis. Video Abstract.


Asunto(s)
Enfermedades Renales , MicroARNs , Receptor Toll-Like 7 , Animales , Ratones , Ratas , Adenina , Células Epiteliales , Inflamación , MicroARNs/genética , FN-kappa B , Transducción de Señal , Enfermedades Renales/genética , Enfermedades Renales/patología , Fibrosis
4.
Biol Pharm Bull ; 46(4): 552-562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005299

RESUMEN

Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Masculino , Ratas , Matriz Extracelular/genética , Inflamación , Riñón , Factores de Necrosis Tumoral/metabolismo , Caracteres Sexuales
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902313

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) nuclear receptor has been an interesting target for the treatment of chronic diseases. Although the efficacy of PPAR pan agonists in several metabolic diseases has been well studied, the effect of PPAR pan agonists on kidney fibrosis development has not been demonstrated. To evaluate the effect of the PPAR pan agonist MHY2013, a folic acid (FA)-induced in vivo kidney fibrosis model was used. MHY2013 treatment significantly controlled decline in kidney function, tubule dilation, and FA-induced kidney damage. The extent of fibrosis determined using biochemical and histological methods showed that MHY2013 effectively blocked the development of fibrosis. Pro-inflammatory responses, including cytokine and chemokine expression, inflammatory cell infiltration, and NF-κB activation, were all reduced with MHY2013 treatment. To demonstrate the anti-fibrotic and anti-inflammatory mechanisms of MHY2013, in vitro studies were conducted using NRK49F kidney fibroblasts and NRK52E kidney epithelial cells. In the NRK49F kidney fibroblasts, MHY2013 treatment significantly reduced TGF-ß-induced fibroblast activation. The gene and protein expressions of collagen I and α-smooth muscle actin were significantly reduced with MHY2013 treatment. Using PPAR transfection, we found that PPARγ played a major role in blocking fibroblast activation. In addition, MHY2013 significantly reduced LPS-induced NF-κB activation and chemokine expression mainly through PPARß activation. Taken together, our results suggest that administration of the PPAR pan agonist effectively prevented renal fibrosis in both in vitro and in vivo models of kidney fibrosis, implicating the therapeutic potential of PPAR agonists against chronic kidney diseases.


Asunto(s)
Enfermedades Renales , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Enfermedades Renales/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , PPAR gamma/metabolismo , Quimiocinas/metabolismo , Fibrosis , Fibroblastos/metabolismo
6.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677908

RESUMEN

In this study, (Z)-2-(benzylamino)-5-benzylidenethiazol-4(5H)-one (BABT) derivatives were designed as tyrosinase inhibitors based on the structure of MHY2081, using a simplified approach. Of the 14 BABT derivatives synthesized, two derivatives ((Z)-2-(benzylamino)-5-(3-hydroxy-4-methoxybenzylidene)thiazol-4(5H)-one [7] and (Z)-2-(benzylamino)-5-(2,4-dihydroxybenzylidene)thiazol-4(5H)-one [8]) showed more potent mushroom tyrosinase inhibitory activities than kojic acid, regardless of the substrate used; in particular, compound 8 was 106-fold more potent than kojic acid when l-tyrosine was used as the substrate. Analysis of Lineweaver-Burk plots for 7 and 8 indicated that they were competitive inhibitors, which was confirmed via in silico docking. In experiments using B16F10 cells, 8 exerted a greater ability to inhibit melanin production than kojic acid, and it inhibited cellular tyrosinase activity in a concentration-dependent manner, indicating that the anti-melanogenic effect of 8 is attributable to its ability to inhibit tyrosinase. In addition, 8 exhibited strong antioxidant activity to scavenge 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and peroxynitrite and inhibited the expression of melanogenesis-associated proteins (tyrosinase and microphthalmia-associated transcription factor). These results suggest that BABT derivative 8 is a promising candidate for the treatment of hyperpigmentation-related diseases, owing to its inhibition of melanogenesis-associated protein expression, direct tyrosinase inhibition, and antioxidant activity.


Asunto(s)
Antioxidantes , Inhibidores Enzimáticos , Melaninas , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores
7.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110531

RESUMEN

(Z)-5-Benzylidene-2-phenylthiazol-4(5H)-one ((Z)-BPT) derivatives were designed by combining the structural characteristics of two tyrosinase inhibitors. The double-bond geometry of trisubstituted alkenes, (Z)-BPTs 1-14, was determined based on the 3JC,Hß coupling constant of 1H-coupled 13C NMR spectra. Three (Z)-BPT derivatives (1-3) showed stronger tyrosinase inhibitory activities than kojic acid; in particular, 2 was to be 189-fold more potent than kojic acid. Kinetic analysis using mushroom tyrosinase indicated that 1 and 2 were competitive inhibitors, whereas 3 was a mixed-type inhibitor. The in silico results revealed that 1-3 could strongly bind to the active sites of mushroom and human tyrosinases, supporting the kinetic results. Derivatives 1 and 2 decreased the intracellular melanin contents in a concentration-dependent manner in B16F10 cells, and their anti-melanogenic efficacy exceeded that of kojic acid. The anti-tyrosinase activity of 1 and 2 in B16F10 cells was similar to their anti-melanogenic effects, suggesting that their anti-melanogenic effects were primarily owing to their anti-tyrosinase activity. Western blotting of B16F10 cells revealed that the derivatives 1 and 2 inhibited tyrosinase expression, which partially contributes to their anti-melanogenic ability. Several derivatives, including 2 and 3, exhibited potent antioxidant activities against ABTS cation radicals, DPPH radicals, ROS, and peroxynitrite. These results suggest that (Z)-BPT derivatives 1 and 2 have promising potential as novel anti-melanogenic agents.


Asunto(s)
Agaricales , Melaninas , Humanos , Cinética , Inhibidores Enzimáticos/química , Agaricales/metabolismo , Monofenol Monooxigenasa
8.
Molecules ; 28(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985573

RESUMEN

A new bicyclic nonene, tsaokoic acid (1), was isolated from the fruits of Amomum tsao-ko, together with three known compounds (2-4). The structure of 1 was elucidated by analyzing spectroscopic data including 1D and 2D NMR spectra and compounds 2-4 were identified as tsaokoin, vanillin, and tsaokoarylone, respectively, by comparing their NMR spectra with previously reported data. Compounds 1-4 showed possible inhibitory activity against acetylcholinesterase (AChE) in silico molecular docking simulations. They were submitted to in vitro assay system and exhibited moderate inhibitory activity with IC50 values of 32.78, 41.70, 39.25, and 31.13 µM, respectively.


Asunto(s)
Amomum , Frutas , Frutas/química , Amomum/química , Acetilcolinesterasa , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/análisis , Estructura Molecular
9.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628280

RESUMEN

(1) Background: Soyasapogenol C (SSC), a derivative of soyasapogenol B (SSB), is specifically found high in many fermented soybean (Glycine max) products, including Cheonggukjang (in Korean). However, the biological activities for preventing and treating hepatic steatosis, and the precise underlying mechanisms of SSC, remain to be explored. (2) Methods: A novel SANDA (structural screening, ADMET prediction, network pharmacology, docking validation, and activity evaluation) methodology was used to examine whether SSC exerts hepatoprotective effects in silico and in vitro. (3) Results: SSC had better ADMET characteristics and a higher binding affinity with predicted targets chosen from network pathway analysis than SSB. SSC induced the phosphorylation of AMP-activated protein kinase (AMPK) and stimulated the nuclear translocation of peroxisome proliferator-activated receptor alpha (PPARα), further enhancing PPAR response element (PPRE) binding activity in HepG2 cells. Concurrently, SSC significantly inhibited triglyceride accumulation, which was associated with the suppression of lipogenesis genes and the enhancement of fatty acid oxidation gene expression in HepG2 cells. (4) Conclusions: Soyasapogenol C, discovered using a novel SANDA methodology from fermented soybean, is a novel AMPK/PPARα dual activator that is effective against hepatic steatosis. Dietary supplementation with soyasapogenol C may prevent the development of hepatic steatosis and other diseases associated with fat accumulation in the liver.


Asunto(s)
Hígado Graso , Alimentos Fermentados , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado Graso/metabolismo , PPAR alfa/metabolismo , Glycine max/metabolismo
10.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055183

RESUMEN

Parkinson's disease (PD) is a progressive movement disorder caused by nigrostriatal neurodegeneration. Since chronically activated neuroinflammation accelerates neurodegeneration in PD, we considered that modulating chronic neuroinflammatory response might provide a novel therapeutic approach. Glycogen synthase kinase 3 (GSK-3) is a multifunctional serine/threonine protein kinase with two isoforms, GSK-3α and GSK-3ß, and GSK-3ß plays crucial roles in inflammatory response, which include microglial migration and peripheral immune cell activation. GSK-3ß inhibitory peptide (IAGIP) is specifically activated by activated inhibitory kappa B kinase (IKK), and its therapeutic effects have been demonstrated in a mouse model of colitis. Here, we investigated whether the anti-inflammatory effects of IAGIP prevent neurodegeneration in the rodent model of PD. IAGIP significantly reduced MPP+-induced astrocyte activation and inflammatory response in primary astrocytes without affecting the phosphorylations of ERK or JNK. In addition, IAGIP inhibited LPS-induced cell migration and p65 activation in BV-2 microglial cells. In vivo study using an MPTP-induced mouse model of PD revealed that intravenous IAGIP effectively prevented motor dysfunction and nigrostriatal neurodegeneration. Our findings suggest that IAGIP has a curative potential in PD models and could offer new therapeutic possibilities for targeting PD.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Quinasa I-kappa B/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Células HCT116 , Humanos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Péptidos/farmacología , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/farmacología
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077427

RESUMEN

BACKGROUND: Circadian rhythm is associated with the aging process and sex differences; however, how age and sex can change circadian regulation systems remains unclear. Thus, we aimed to evaluate age- and sex-related changes in gene expression and identify sex-specific target molecules that can regulate aging. METHODS: Rat livers were categorized into four groups, namely, young male, old male, young female, and old female, and the expression of several genes involved in the regulation of the circadian rhythm was confirmed by in silico and in vitro studies. RESULTS: Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed that the expression of genes related to circadian rhythms changed more in males than in females during liver aging. In addition, differentially expressed gene analysis and quantitative real-time polymerase chain reaction/western blotting analysis revealed that Nr1d1 and Nr1d2 expression was upregulated in males during liver aging. Furthermore, the expression of other circadian genes, such as Arntl, Clock, Cry1/2, Per1/2, and Rora/c, decreased in males during liver aging; however, these genes showed various gene expression patterns in females during liver aging. CONCLUSIONS: Age-related elevation of Nr1d1/2 downregulates the expression of other circadian genes in males, but not females, during liver aging. Consequently, age-related upregulation of Nr1d1/2 may play a more crucial role in the change in circadian rhythms in males than in females during liver aging.


Asunto(s)
Envejecimiento , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Caracteres Sexuales , Envejecimiento/genética , Envejecimiento/patología , Animales , Relojes Circadianos , Ritmo Circadiano/genética , Femenino , Hígado , Masculino , Ratas , Factores de Transcripción
12.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35163511

RESUMEN

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Naftalenos/farmacología , Sirtuinas/antagonistas & inhibidores , Apoptosis , Benzamidas/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Naftalenos/química , Naftoles/química
13.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G30-G42, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146548

RESUMEN

Protease-activated receptor 2 (PAR2) regulates inflammatory responses and lipid metabolism. However, its precise role in colitis remains unclear. In this study, we aimed to investigate the function of PAR2 in high-fat diet-fed mice with colitis and its potential role in autophagy. PAR2+/+ and PAR2-/- mice were fed a high-fat diet (HFD) for 7 days before colitis induction with dextran sodium sulfate. Deletion of PAR2 and an HFD significantly exacerbated colitis, as shown by increased mortality, body weight loss, diarrhea or bloody stools, colon length shortening, and mucosal damage. Proinflammatory cytokine levels were elevated in HFD-fed PAR2-/- mice and in cells treated with the PAR2 antagonist GB83, palmitic acid (PA), and a cytokine cocktail (CC). Damaging effects of PAR2 blockage were associated with autophagy regulation by reducing the levels of YAP1, SIRT1, PGC-1α, Atg5, and LC3A/B-I/II. In addition, mitochondrial dysfunction was demonstrated only in cells treated with GB83, PA, and CC. Reduced cell viability and greater induction of apoptosis, as shown by increased levels of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP), were observed in cells treated with GB83, PA, and CC but not in those treated with only PA and CC. Collectively, protective effects of PAR2 were elucidated during inflammation accompanied by a high-fat environment by promoting autophagy and inhibiting apoptosis, suggesting PAR2 as a therapeutic target for inflammatory bowel disease co-occurring with metabolic syndrome.NEW & NOTEWORTHY Deletion of PAR2 with high-fat diet feeding exacerbates colitis in a murine colitis model. Proinflammatory effects of PAR2 blockage in a high-fat environment were associated with an altered balance between autophagy and apoptosis. Increased colonic levels of PAR2 represent as a therapeutic strategy for IBD co-occurring with metabolic syndrome.


Asunto(s)
Apoptosis/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Inflamación/tratamiento farmacológico , Receptor PAR-2/efectos de los fármacos , Autofagia/efectos de los fármacos , Colon/efectos de los fármacos , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Receptor PAR-2/metabolismo
14.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639224

RESUMEN

BACKGROUND: Cheonggukjang is a traditional fermented soybean paste that is mostly consumed in Korea. However, the biological activities of Cheonggukjang specific compounds have not been studied. Thus, we aimed to discover a novel dual agonist for PPARα/γ from dietary sources such as Cheonggukjang specific volatile compounds and explore the potential role of PPARα/γ dual agonists using in vitro and in silico tools. METHODS: A total of 35 compounds were selected from non-fermented and fermented soybean products cultured with Bacillus subtilis, namely Cheonggukjang, for analysis by in vitro and in silico studies. RESULTS: Molecular docking results showed that 1,3-diphenyl-2-propanone (DPP) had the lowest docking score for activating PPARα (1K7L) and PPARγ (3DZY) with non-toxic effects. Moreover, DPP significantly increased the transcriptional activities of both PPARα and PPARγ and highly activated its expression in Ac2F liver cells, in vitro. Here, we demonstrated for the first time that DPP can act as a dual agonist of PPARα/γ using in vitro and in silico tools. CONCLUSIONS: The Cheonggukjang-specific compound DPP could be a novel PPARα/γ dual agonist and it is warranted to determine the therapeutic potential of PPARα/γ activation by dietary intervention and/or supplementation in the treatment of metabolic disorders without causing any adverse effects.


Asunto(s)
Bacillus subtilis/fisiología , Compuestos de Bifenilo/farmacología , Simulación por Computador , Simulación del Acoplamiento Molecular , PPAR alfa/agonistas , PPAR gamma/agonistas , Alimentos de Soja/microbiología , Compuestos de Bifenilo/química , Fermentación , Técnicas In Vitro
15.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445310

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 µM) than hACE2 receptor (1.12 µM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin's interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2's entry into human cells.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/química , Glucósidos/química , Humanos , Taninos Hidrolizables/química , Ligandos , Simulación de Dinámica Molecular , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/química
16.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073584

RESUMEN

PPARα is a ligand-dependent transcription factor and its activation is known to play an important role in cell defense through anti-inflammatory and antioxidant effects. MHY3200 (2-[4-(5-chlorobenzo[d]thiazol-2-yl)phenoxy]-2,2-difluoroacetic acid), a novel benzothiazole-derived peroxisome proliferator-activated receptor α (PPARα) agonist, is a synthesized PPARα activator. This study examined the beneficial effects of MHY3200 on age-associated alterations in reactive oxygen species (ROS)/Akt/forkhead box (FoxO) 1 signaling in rat kidneys. Young (7-month-old) and old (22-month-old) rats were treated with MHY3200 (1 mg/kg body weight/day or 3 mg/kg body weight/day) for two weeks. MHY3200 treatment led to a notable decrease in triglyceride and insulin levels in serum from old rats. The elevated kidney ROS level, serum insulin level, and Akt phosphorylation in old rats were reduced following MHY3200 treatment; moreover, FoxO1 phosphorylation increased. MHY3200 treatment led to the increased level of FoxO1 and its target gene, MnSOD. MHY3200 suppressed cyclooxygenase-2 expression by activating PPARα and inhibiting the activation of nuclear factor-κB (NF-κB) in the kidneys of old rats. Our results suggest that MHY3200 ameliorates age-associated renal inflammation by regulating NF-κB and FoxO1 via ROS/Akt signaling.


Asunto(s)
Acetatos/farmacología , Envejecimiento/efectos de los fármacos , Inflamación/tratamiento farmacológico , Riñón/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , PPAR alfa/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tiazoles/farmacología , Acetatos/uso terapéutico , Animales , Peso Corporal , Regulación de la Expresión Génica , Hipoglucemiantes/farmacología , Insulina/metabolismo , Riñón/patología , Masculino , PPAR alfa/metabolismo , Fosforilación , Unión Proteica , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Tiazoles/uso terapéutico , Factores de Tiempo , Triglicéridos/metabolismo
17.
Liver Int ; 40(11): 2706-2718, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32639626

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis. METHODS: Hepatic ER stress responses and lipogenesis were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. In the in vitro study, HepG2 cells overexpressing constitutively active FoxO6 were treated with palmitate, and then alterations in ER stress and lipid metabolism were measured. RESULTS: FoxO6 activation induced hepatic lipogenesis and the expression of ER stress-inducible genes. The expression and transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) were significantly increased in constitutively active FoxO6 allele. Interestingly, we found that the active FoxO6 physically interacted with C/EBP homologous protein (CHOP), an ER stress-inducible transcription factor, which was responsible for PPARγ expression. Palmitate treatment caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in HepG2 cells. Palmitate-induced ER stress led to PPARγ expression through interactions between CHOP and FoxO6 corresponding to findings in the in vivo study. On the other hand, the expression of PPARα and ß-oxidation were decreased in constitutively active FoxO6 allele which implied that lipid catabolism is also regulated by FoxO6. CONCLUSION: Our data present significant evidence demonstrating that CHOP and FoxO6 interact to induce hepatic lipid accumulation through PPARγ expression during ER stress.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Animales , Estrés del Retículo Endoplásmico , Factores de Transcripción Forkhead , Células Hep G2 , Humanos , Lípidos , Ratones , Factor de Transcripción CHOP
18.
Molecules ; 25(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233397

RESUMEN

A series of (E)-1-(furan-2-yl)prop-2-en-1-one derivatives (compounds 1-8) were synthesized and evaluated for their mushroom tyrosinase inhibitory activity. Among these series, compound 8 (2,4-dihydroxy group bearing benzylidene) showed potent tyrosinase inhibitory activity, with respective IC50 values of 0.0433 µM and 0.28 µM for the monophenolase and diphenolase as substrates in comparison to kojic acid as standard compound 19.97 µM and 33.47 µM. Moreover, the enzyme kinetics of compound 8 were determined to be of the mixed inhibition type and inhibition constant (Ki) values of 0.012 µM and 0.165 µM using the Lineweaver-Burk plot. Molecular docking results indicated that compound 8 can bind to the catalytic and allosteric sites 1 and 2 of tyrosinase to inhibit enzyme activity. The computational molecular dynamics analysis further revealed that compound 8 interacted with two residues in the tyrosinase active site pocket, such as ASN260 and MET280. In addition, compound 8 attenuated melanin synthesis and cellular tyrosinase activity, simulated by α-melanocyte-stimulating hormone and 1-methyl-3-isobutylxanthine. Compound 8 also decreased tyrosinase expressions in B16F10 cells. Based on in vitro and computational studies, we propose that compound 8 might be a worthy candidate for the development of an antipigmentation agent.


Asunto(s)
Simulación por Computador , Inhibidores Enzimáticos/farmacología , Furanos/farmacología , Melaninas/antagonistas & inhibidores , Monofenol Monooxigenasa/antagonistas & inhibidores , Agaricales/enzimología , Animales , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Furanos/síntesis química , Furanos/química , Concentración 50 Inhibidora , Cinética , Melanoma Experimental/patología , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monofenol Monooxigenasa/metabolismo
19.
Exp Dermatol ; 28(6): 734-737, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30554432

RESUMEN

Tyrosinase is a key enzyme that catalyses the initial rate-limiting steps of melanin synthesis. Due to its critical role in melanogenesis, various attempts were made to find potent tyrosinase inhibitors although many were not safe and effective in vivo. We evaluated tyrosinase inhibitory activity of six compounds. Among them, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-thioxothiazolidin-4-one (5-HMT) had the greatest inhibitory effect and potency as the IC50 value of 5-HMT was lower than that of kojic acid, widely-known tyrosinase inhibitor. Based on in silico docking simulation, 5-HMT had a greater binding affinity than kojic acid with a different binding conformation in the tyrosinase catalytic site. Furthermore, its skin depigmentation effect was confirmed in vivo as 5-HMT topical treatment significantly reduced UVB-induced melanogenesis in HRM2 hairless mice. In conclusion, our study demonstrated that 5-HMT has a greater binding affinity and inhibitory effect on tyrosinase and may be a potential candidate for a therapeutic agent for preventing melanogenesis.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Melaninas/química , Melanocitos/citología , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Diseño de Fármacos , Concentración 50 Inhibidora , Ratones , Simulación del Acoplamiento Molecular , Pironas/farmacología , Pigmentación de la Piel , Tiazolidinas/farmacología , Rayos Ultravioleta
20.
J Am Soc Nephrol ; 29(4): 1223-1237, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29440279

RESUMEN

Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor α (PPARα) and the FAO pathway as regulators of age-associated renal fibrosis. The expression of PPARα and the FAO pathway-associated proteins significantly decreased with the accumulation of lipids in the renal tubular epithelial region during aging in rats. In particular, decreased PPARα protein expression associated with increased expression of PPARα-targeting microRNAs. Among the microRNAs with increased expression during aging, miR-21 efficiently decreased PPARα expression and impaired FAO when ectopically expressed in renal epithelial cells. In cells pretreated with oleic acid to induce lipid stress, miR-21 treatment further enhanced lipid accumulation. Furthermore, treatment with miR-21 significantly exacerbated the TGF-ß-induced fibroblast phenotype of epithelial cells. We verified the physiologic importance of our findings in a calorie restriction model. Calorie restriction rescued the impaired FAO pathway during aging and slowed fibrosis development. Finally, compared with kidneys of aged littermate controls, kidneys of aged PPARα-/- mice showed exaggerated lipid accumulation, with decreased activity of the FAO pathway and a severe fibrosis phenotype. Our results suggest that impaired renal PPARα signaling during aging aggravates renal fibrosis development, and targeting PPARα is useful for preventing age-associated CKD.


Asunto(s)
Envejecimiento/metabolismo , Ácidos Grasos/metabolismo , Riñón/patología , PPAR alfa/metabolismo , Envejecimiento/patología , Animales , Restricción Calórica , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Fibrosis , Regulación de la Expresión Génica , Riñón/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/farmacología , Ácido Oléico/farmacología , Oxidación-Reducción , PPAR alfa/deficiencia , PPAR alfa/genética , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA