Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928084

RESUMEN

Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Heterocigoto , Espasticidad Muscular , Mutación , Humanos , Masculino , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Adulto , República de Corea/epidemiología , Espasticidad Muscular/genética , Espasticidad Muscular/diagnóstico por imagen , Estudios de Cohortes , Persona de Mediana Edad , Imagen por Resonancia Magnética , Proteínas de Choque Térmico/genética , Linaje , Secuenciación del Exoma , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico por imagen , Fenotipo , Adolescente , Adulto Joven
2.
J Peripher Nerv Syst ; 28(1): 108-118, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637069

RESUMEN

Mutations in INF2 are associated with the complex symptoms of Charcot-Marie-Tooth disease (CMT) and focal segmental glomerulosclerosis (FSGS). To date, more than 100 and 30 genes have been reported to cause these disorders, respectively. This study aimed to identify INF2 mutations in Korean patients with CMT. This study was conducted with 743 Korean families with CMT who were negative for PMP22 duplication. In addition, a family with FSGS was included in this study. INF2 mutations were screened using whole exome sequencing (WES) and filtering processes. As the results, four pathogenic INF2 mutations were identified in families with different clinical phenotypes: p.L78P and p.L132P in families with symptoms of both CMT and FSGS; p.C104Y in a family with CMT; and p.R218Q in a family with FSGS. Moreover, different CMT types were observed in families with CMT symptoms: CMT1 in two families and Int-CMT in another family. Hearing loss was observed in two families with CMT1. Pathogenicity was predicted by in silico analyses, and considerable conformational changes were predicted in the mutant proteins. Two mutations (p.L78P and p.C104Y) were unreported, and three families showed de novo mutations that were putatively occurred from fathers. This study suggests that patients with INF2 mutations show a broad phenotypic spectrum: CMT1, CMT1 + FSGS, CMTDIE + FSGS, and FSGS. Therefore, the genotype-phenotype correlation may be more complex than previously recognized. We believe that this study expands the clinical spectrum of patients with INF2 mutations and will be helpful in the molecular diagnosis of CMT and FSGS.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Forminas , Glomeruloesclerosis Focal y Segmentaria , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/complicaciones , Forminas/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Fenotipo
3.
J Neurol Neurosurg Psychiatry ; 93(1): 48-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518334

RESUMEN

OBJECTIVE: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS: In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS: This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Filamentos Intermedios/genética , Adulto , Exones , Femenino , Genotipo , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Neurofilamentos/genética , Neuronas , Linaje , Fenotipo , Nervio Sural , Adulto Joven
4.
EMBO Rep ; 21(2): e48290, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31885126

RESUMEN

The endothelial cilium is a microtubule-based organelle responsible for blood flow-induced mechanosensation and signal transduction during angiogenesis. The precise function and mechanisms by which ciliary mechanosensation occurs, however, are poorly understood. Although posttranslational modifications (PTMs) of cytoplasmic tubulin are known to be important in angiogenesis, the specific roles of ciliary tubulin PTMs play remain unclear. Here, we report that loss of centrosomal protein 41 (CEP41) results in vascular impairment in human cell lines and zebrafish, implying a previously unknown pro-angiogenic role for CEP41. We show that proper control of tubulin glutamylation by CEP41 is necessary for cilia disassembly and that is involved in endothelial cell (EC) dynamics such as migration and tubulogenesis. We show that in ECs responding to shear stress or hypoxia, CEP41 activates Aurora kinase A (AURKA) and upregulates expression of VEGFA and VEGFR2 through ciliary tubulin glutamylation, as well as leads to the deciliation. We further show that in hypoxia-induced angiogenesis, CEP41 is responsible for the activation of HIF1α to trigger the AURKA-VEGF pathway. Overall, our results suggest the CEP41-HIF1α-AURKA-VEGF axis as a key molecular mechanism of angiogenesis and demonstrate how important ciliary tubulin glutamylation is in mechanosense-responded EC dynamics.


Asunto(s)
Aurora Quinasa A , Tubulina (Proteína) , Animales , Aurora Quinasa A/genética , Cilios , Humanos , Microtúbulos , Proteínas , Tubulina (Proteína)/genética , Pez Cebra/genética
5.
J Peripher Nerv Syst ; 27(1): 38-49, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34813128

RESUMEN

Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.


Asunto(s)
Aminoacil-ARNt Sintetasas , Enfermedad de Charcot-Marie-Tooth , Aminoacil-ARNt Sintetasas/genética , Enfermedad de Charcot-Marie-Tooth/patología , Estudios de Cohortes , Humanos , Mutación/genética , Fenotipo , Proteínas/genética , República de Corea
6.
Stem Cells ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107705

RESUMEN

In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.

7.
Glia ; 68(9): 1794-1809, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32077526

RESUMEN

Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Ratones , Ratones Noqueados , Mutación , Nervios Periféricos , Sistema Nervioso Periférico
8.
Mol Biol Rep ; 47(12): 9979-9985, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33269433

RESUMEN

Autosomal recessive nonsyndromic hearing loss (DFNB) is relatively frequent in Pakistan, which is thought to be mainly due to relatively frequent consanguinity. DFNB genes vary widely in their kinds and functions making molecular diagnosis difficult. This study determined the genetic causes in five Pakistani DFNB families with prelingual onset. The familial genetic analysis identified four pathogenic or likely pathogenic homozygous mutations by whole exome sequencing: two splicing donor site mutations of c.787+1G>A in ESRRB (DFNB35) and c.637+1G>T in CABP2 (DFNB93) and two missense mutations of c.7814A>G (p.Asn2605Ser) in CDH23 (DFNB12) and c.242G>A (p.Arg81His) in TMIE (DFNB6). The ESRRB and TMIE mutations were novel, and the TMIE mutation was observed in two families. The two missense mutations were located at well conserved sites and in silico analysis predicted their pathogenicity. This study identified four homozygous mutations as the underlying cause of DFNB including two novel mutations. This study will be helpful for the exact molecular diagnosis and treatment of deafness patients.


Asunto(s)
Cadherinas/genética , Proteínas de Unión al Calcio/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Receptores de Estrógenos/genética , Adolescente , Adulto , Proteínas Relacionadas con las Cadherinas , Niño , Preescolar , Consanguinidad , Sordera/epidemiología , Femenino , Pérdida Auditiva Sensorineural/epidemiología , Homocigoto , Humanos , Masculino , Mutación Missense , Pakistán/epidemiología
9.
Neurogenetics ; 20(3): 117-127, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31011849

RESUMEN

Charcot-Marie-Tooth (CMT) disease is a form of inherited peripheral neuropathy that affects motor and sensory neurons. To identify the causative gene in a consanguineous family with autosomal recessive CMT (AR-CMT), we employed a combination of linkage analysis and whole exome sequencing. After excluding known AR-CMT genes, genome-wide linkage analysis mapped the disease locus to a 7.48-Mb interval on chromosome 14q32.11-q32.33, flanked by the markers rs2124843 and rs4983409. Whole exome sequencing identified two non-synonymous variants (p.T40P and p.H915Y) in the AHNAK2 gene that segregated with the disease in the family. Pathogenic predictions indicated that p.T40P is the likely causative allele. Analysis of AHNAK2 expression in the AR-CMT patient fibroblasts showed significantly reduced mRNA and protein levels. AHNAK2 binds directly to periaxin which is encoded by the PRX gene, and PRX mutations are associated with another form of AR-CMT (CMT4F). The altered expression of mutant AHNAK2 may disrupt the AHNAK2-PRX interaction in which one of its known functions is to regulate myelination.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas del Citoesqueleto/genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Adolescente , Alelos , Biopsia , Mapeo Cromosómico , Consanguinidad , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Genes Recesivos , Ligamiento Genético , Marcadores Genéticos , Haplotipos , Humanos , Escala de Lod , Pérdida de Heterocigocidad , Malasia , Masculino , Mutación Missense , Neuronas/metabolismo , Linaje , Secuenciación del Exoma
10.
J Hum Genet ; 64(9): 961-965, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31227790

RESUMEN

Charcot-Marie-Tooth disease type 4C (CMT4C) is an autosomal recessive neuropathy caused by SH3TC2 mutations, characterized by spine deformities and cranial nerve involvement. This study identified four CMT4C families with compound heterozygous SH3TC2 mutations from 504 Korean demyelinating or intermediate CMT patients. The frequency of the CMT4C was calculated as 0.79% in demyelinating and intermediate patients (n = 504), but it was calculated as 2.02% in patients without PMP22 duplication (n = 198). The CMT4C frequency was similar to patients in Japan, but it was relatively low compared to those patients in other populations. The symptom was less severe and slowly progressed compared to the other AR-CMT. A patient harboring an intermediate neuropathy showed cranial nerve involvement but did not have scoliosis. This study will be helpful in making molecular diagnoses of demyelinating or intermediate CMT due to SH3TC2 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Heterocigoto , Mutación , Proteínas/genética , Adulto , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , República de Corea
11.
PLoS Genet ; 12(2): e1005829, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26828946

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of peripheral neuropathies with diverse genetic causes. In this study, we identified p.I43N mutation in PMP2 from a family exhibiting autosomal dominant demyelinating CMT neuropathy by whole exome sequencing and characterized the clinical features. The age at onset was the first to second decades and muscle atrophy started in the distal portion of the leg. Predominant fatty replacement in the anterior and lateral compartment was similar to that in CMT1A caused by PMP22 duplication. Sural nerve biopsy showed onion bulbs and degenerating fibers with various myelin abnormalities. The relevance of PMP2 mutation as a genetic cause of dominant CMT1 was assessed using transgenic mouse models. Transgenic mice expressing wild type or mutant (p.I43N) PMP2 exhibited abnormal motor function. Electrophysiological data revealed that both mice had reduced motor nerve conduction velocities (MNCV). Electron microscopy revealed that demyelinating fibers and internodal lengths were shortened in both transgenic mice. These data imply that overexpression of wild type as well as mutant PMP2 also causes the CMT1 phenotype, which has been documented in the PMP22. This report might expand the genetic and clinical features of CMT and a further mechanism study will enhance our understanding of PMP2-associated peripheral neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedades Desmielinizantes/genética , Genes Dominantes , Proteína P2 de Mielina/genética , Secuencia de Aminoácidos , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Segregación Cromosómica , Simulación por Computador , Fenómenos Electrofisiológicos , Familia , Femenino , Células HEK293 , Humanos , Pierna/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Proteína P2 de Mielina/química , Linaje , Fenotipo , Nervio Sural/patología , Nervio Sural/fisiopatología
12.
Ann Neurol ; 81(1): 147-151, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27863451

RESUMEN

Here, we report the structural evidence of cerebral white matter abnormalities in Charcot-Marie-Tooth (CMT) patients and the relationship between these abnormalities and clinical disability. Brain diffusion tensor imaging (DTI) was performed in CMT patients with demyelinating (CMT1A/CMT1E), axonal (CMT2A/CMT2E), or intermediate (CMTX1/DI-CMT) peripheral neuropathy. Although all patients had normal brain magnetic resonance imaging, all genetic subgroups except CMT1A had abnormal DTI findings indicative of significant cerebral white matter abnormalities: decreased fractional anisotropy and axial diffusivity, and increased radial diffusivity. DTI abnormalities were correlated with clinical disability, suggesting that there is comorbidity of central nervous system damage with peripheral neuropathy in CMT patients. ANN NEUROL 2017;81:147-151.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Enfermedades del Sistema Nervioso Periférico/patología , Sustancia Blanca/patología , Anisotropía , Estudios de Casos y Controles , Enfermedad de Charcot-Marie-Tooth/genética , Imagen de Difusión Tensora , Evaluación de la Discapacidad , Femenino , Humanos , Masculino , Mutación , Neuroimagen
13.
Brain ; 140(5): 1252-1266, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369220

RESUMEN

Distal hereditary motor neuropathy is a heterogeneous group of inherited neuropathies characterized by distal limb muscle weakness and atrophy. Although at least 15 genes have been implicated in distal hereditary motor neuropathy, the genetic causes remain elusive in many families. To identify an additional causal gene for distal hereditary motor neuropathy, we performed exome sequencing for two affected individuals and two unaffected members in a Taiwanese family with an autosomal dominant distal hereditary motor neuropathy in which mutations in common distal hereditary motor neuropathy-implicated genes had been excluded. The exome sequencing revealed a heterozygous mutation, c.770A > G (p.His257Arg), in the cytoplasmic tryptophanyl-tRNA synthetase (TrpRS) gene (WARS) that co-segregates with the neuropathy in the family. Further analyses of WARS in an additional 79 Taiwanese pedigrees with inherited neuropathies and 163 index cases from Australian, European, and Korean distal hereditary motor neuropathy families identified the same mutation in another Taiwanese distal hereditary motor neuropathy pedigree with different ancestries and one additional Belgian distal hereditary motor neuropathy family of Caucasian origin. Cell transfection studies demonstrated a dominant-negative effect of the p.His257Arg mutation on aminoacylation activity of TrpRS, which subsequently compromised protein synthesis and reduced cell viability. His257Arg TrpRS also inhibited neurite outgrowth and led to neurite degeneration in the neuronal cell lines and rat motor neurons. Further in vitro analyses showed that the WARS mutation could potentiate the angiostatic activities of TrpRS by enhancing its interaction with vascular endothelial-cadherin. Taken together, these findings establish WARS as a gene whose mutations may cause distal hereditary motor neuropathy and alter canonical and non-canonical functions of TrpRS.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Neuropatía Hereditaria Motora y Sensorial/genética , Triptófano-ARNt Ligasa/genética , Animales , Supervivencia Celular , Células Cultivadas , Exoma/genética , Femenino , Humanos , Masculino , Ratones , Mutación , Neuritas/patología , Neuritas/fisiología , Linaje , Biosíntesis de Proteínas/genética , Proteínas , Análisis de Secuencia de ADN , Triptófano-ARNt Ligasa/metabolismo
14.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110925

RESUMEN

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited motor and sensory neuropathy, and is caused by duplication of PMP22, alterations of which are a characteristic feature of demyelination. The clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. Therefore, we investigated the potential of Schwann-like cells differentiated from human tonsil-derived stem cells (T-MSCs) for use in neuromuscular regeneration in trembler-J (Tr-J) mice, a model of CMT1A. After differentiation, we confirmed the increased expression of Schwann cell (SC) markers, including glial fibrillary acidic protein (GFAP), nerve growth factor receptor (NGFR), S100 calcium-binding protein B (S100B), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), which suggests the differentiation of T-MSCs into SCs (T-MSC-SCs). To test their functional efficiency, the T-MSC-SCs were transplanted into the caudal thigh muscle of Tr-J mice. Recipients' improved locomotive activity on a rotarod test, and their sciatic function index, which suggests that transplanted T-MSC-SCs ameliorated demyelination and atrophy of nerve and muscle in Tr-J mice. Histological and molecular analyses showed the possibility of in situ remyelination by T-MSC-SCs transplantation. These findings demonstrate that the transplantation of heterologous T-MSC-SCs induced neuromuscular regeneration in mice and suggest they could be useful for the therapeutic treatment of patients with CMT1A disease.


Asunto(s)
Diferenciación Celular , Enfermedad de Charcot-Marie-Tooth/terapia , Células Madre Mesenquimatosas/metabolismo , Tonsila Palatina/metabolismo , Recuperación de la Función , Células de Schwann/trasplante , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Mutantes , Tonsila Palatina/patología , Células de Schwann/metabolismo , Células de Schwann/patología
15.
Am J Hum Genet ; 95(5): 590-601, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439726

RESUMEN

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-µ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Exoma/genética , Modelos Moleculares , Mutación Missense/genética , Fenotipo , Adulto , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/patología , Mapeo Cromosómico , Femenino , Haplotipos/genética , Humanos , Datos de Secuencia Molecular , Linaje , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Nervio Sural/patología
16.
Ann Neurol ; 79(2): 231-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26506222

RESUMEN

OBJECTIVE: Distal myopathy is a heterogeneous group of muscle diseases characterized by predominant distal muscle weakness. A study was done to identify the underlying cause of autosomal recessive adolescent onset distal myopathy. METHODS: Four patients from 2 unrelated Korean families were evaluated. To isolate the genetic cause, exome sequencing was performed. In vitro and in vivo assays using myoblast cells and zebrafish models were performed to examine the ADSSL1 mutation causing myopathy pathogenesis. RESULTS: Patients had an adolescent onset distal myopathy phenotype that included distal dominant weakness, facial muscle weakness, rimmed vacuoles, and mild elevation of serum creatine kinase. Exome sequencing identified completely cosegregating compound heterozygous mutations (p.D304N and p.I350fs) in ADSSL1, which encodes a muscle-specific adenylosuccinate synthase in both families. None of the controls had both mutations, and the mutation sites were located in well-conserved regions. Both the D304N and I350fs mutations in ADSSL1 led to decreased enzymatic activity. The knockdown of the Adssl1 gene significantly inhibited the proliferation of mouse myoblast cells, and the addition of human wild-type ADSSL1 reversed the reduced viability. In an adssl1 knockdown zebrafish model, muscle fibers were severely disrupted, which was evaluated by myosin expression and birefringence. In these conditions, supplementing wild-type ADSSL1 protein reversed the muscle defect. INTERPRETATION: We suggest that mutations in ADSSL1 are the novel genetic cause of the autosomal recessive adolescent onset distal myopathy. This study broadens the genetic and clinical spectrum of distal myopathy and will be useful for exact molecular diagnostics.


Asunto(s)
Adenilosuccinato Sintasa/genética , Miopatías Distales/genética , Adulto , Edad de Inicio , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Miopatías Distales/enzimología , Miopatías Distales/fisiopatología , Femenino , Humanos , Masculino , Ratones , Mutación , Linaje , Fenotipo , República de Corea , Adulto Joven , Pez Cebra , Proteínas de Pez Cebra
17.
J Peripher Nerv Syst ; 22(3): 200-207, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544463

RESUMEN

Mutations in the NEFH gene encoding the heavy neurofilament protein are usually associated with neuronal damage and susceptibility to amyotrophic lateral sclerosis (ALS). Recently, frameshift variants in NEFH (p.Asp1004Glnfs*58 and p.Pro1008Alafs*56) have been reported to be the underlying cause of axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). The frameshift mutation resulted in a stop loss and translation of a cryptic amyloidogenic element (CAE) encoded by the 3' untranslated region (UTR). This study also identified a de novo c.3015_3027dup frameshift mutation predicting p.Lys1010Glnfs*57 in NEFH from a CMT2 family with an atypical clinical symptom of prominent proximal weakness. This mutation is located near the previously reported frameshift mutations, suggesting a mutational hotspot. Lower limb magnetic resonance imaging (MRI) revealed marked hyperintense signal changes in the thigh muscles compared with those in the calf muscles. Therefore, this study suggests that the stop loss and translational elongations by the 3' UTR of the NEFH mutations may be a relatively frequent genetic cause of axonal peripheral neuropathy with the specific characteristics of proximal dominant weakness.


Asunto(s)
Regiones no Traducidas 3'/genética , Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Mutación del Sistema de Lectura/genética , Proteínas de Neurofilamentos/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/patología , Análisis Mutacional de ADN , Femenino , Humanos , Extremidad Inferior/diagnóstico por imagen , Imagen por Resonancia Magnética , Conducción Nerviosa/genética , Linaje
18.
Hum Mutat ; 37(5): 473-80, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26786738

RESUMEN

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy and is a genetically and clinically heterogeneous disorder. We examined a Korean family in which two individuals had an autosomal-dominant axonal CMT with early-onset, sensory ataxia, tremor, and slow disease progression. Pedigree analysis and exome sequencing identified a de novo missense mutation (p.Y223H) in the diacylglycerol O-acyltransferase 2 (DGAT2) gene. DGAT2 encodes an endoplasmic reticulum-mitochondrial-associated membrane protein, acyl-CoA:diacylglycerol acyltransferase, which catalyzes the final step of the triglyceride (TG) biosynthesis pathway. The patient showed consistently decreased serum TG levels, and overexpression of the mutant DGAT2 significantly inhibited the proliferation of mouse motor neuron cells. Moreover, the variant form of human DGAT2 inhibited the axonal branching in the peripheral nervous system of zebrafish. We suggest that mutation of DGAT2 is the novel underlying cause of an autosomal-dominant axonal CMT2 neuropathy. This study will help provide a better understanding of the pathophysiology of axonal CMT and contribute to the molecular diagnostics of peripheral neuropathies.


Asunto(s)
Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Mutación Missense , Adulto , Edad de Inicio , Animales , Axones/metabolismo , Línea Celular , Proliferación Celular , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Linaje , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Int J Legal Med ; 130(3): 669-77, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26862047

RESUMEN

Analysis of large numbers of single-nucleotide polymorphisms (SNPs) can increase individual discrimination power, and, particularly, it can supply important evidence for kinship or ethnic identification. We identified 300 Korean-specific SNPs from 306 Korean whole-exome sequencing (WES) data. Functionally significant SNPs (variants in splicing site, missense, nonsense, and exonic indels) were filtered out from the variant pool, and SNPs with minor allele frequencies (MAFs) of <0.3 in the 1000 Genomes (1000G) database but >0.3 in the Korean population were selected. Genotypes obtained from WES were confirmed by the Sanger sequencing method. The identified markers were evenly distributed throughout the autosomal chromosomes. All the SNPs were in the Hardy-Weinberg equilibrium with a mean MAF of 0.415 (0.161 in 1000G). The mean heterozygosities were 0.476 (observed) and 0.470 (experimental). The combined power of discrimination was very high. Korean MAFs in most SNPs were similar to those for the Chinese and Japanese populations, but were significantly higher than those for several other ethnic populations. These selected SNPs will be used to develop forensic markers and are expected to be widely used for additional individual identification, ethnic discrimination, and linkage analysis for kinship tests.


Asunto(s)
Pueblo Asiatico/genética , Exoma , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Frecuencia de los Genes , Genotipo , Heterocigoto , Humanos , República de Corea
20.
Ann Hum Genet ; 79(6): 460-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26400421

RESUMEN

Charcot-Marie-Tooth disease type 4H (CMT4H) is an autosomal recessive demyelinating subtype of peripheral enuropathies caused by mutations in the FGD4 gene. Most CMT4H patients are in consanguineous Mediterranean families characterized by early onset and slow progression. We identified two CMT4H patients from a Korean CMT cohort, and performed a detailed genetic and clinical analysis in both cases. Both patients from nonconsanguineous families showed characteristic clinical manifestations of CMT4H including early onset, scoliosis, areflexia, and slow disease progression. Exome sequencing revealed novel compound heterozygous mutations in FGD4 as the underlying cause in both families (p.Arg468Gln and c.1512-2A>C in FC73, p.Met345Thr and c.2043+1G>A (p.Trp663Trpfs*30) in FC646). The missense mutations were located in highly conserved RhoGEF and PH domains which were predicted to be pathogenic in nature by in silico modeling. The CMT4H occurrence frequency was calculated to 0.7% in the Korean demyelinating CMT patients. This study is the first report of CMT4H in Korea. FGD4 assay could be considered as a means of molecular diagnosis for sporadic cases of demyelinating CMT with slow progression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteínas de Microfilamentos/genética , Secuencia de Aminoácidos , Pueblo Asiatico/genética , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Linaje , República de Corea , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA