Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 61(8): 834-42, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21874954

RESUMEN

In 2009, the U.S. Environmental Protection Agency (EPA) executed a year-long field study at a refinery in Corpus Christi, TX, to evaluate the use of passive diffusive sampling technology for assessing time-averaged benzene concentrations at the facility fence line. The purpose of the study was to investigate the implementation viability and performance of this type of monitoring in a real-world setting as part of EPA's fence-line measurement research program. The study utilized 14-day, time-integrated Carbopack X samplers deployed at 18 locations on the fence line and at two nearby air monitoring sites equipped with automated gas chromatographs. The average fence-line benzene concentration during the study was 1075 parts per trillion by volume (pptv) with a standard deviation of 1935 pptv. For a 6-month period during which wind direction was uniform, the mean concentration value for a group of downwind sites exceeded the mean value of a similar upwind group by 1710 pptv. Mean value differences for these groups were not statistically significant for the remaining 6-month time period when wind directions were mixed. The passive sampling approach exhibited acceptable performance with a data completeness value of 97.1% (n = 579). Benzene concentration comparisons with automated gas chromatographs yielded an r2 value of 0.86 and a slope of 0.90 (n = 50). A linear regression of duplicate pairs yielded an r2 of 0.97, unity slope, and zero intercept (n = 56). In addition to descriptions of technique performance and general results, time-series analyses are described, providing insight into the utility of 2-week sampling for source apportionment under differing meteorological conditions. The limitations of the approach and recommendations for future measurement method development work are also discussed.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/instrumentación , Contaminantes Atmosféricos/análisis , Benceno/análisis , Monitoreo del Ambiente/métodos , Industrias , Petróleo , Reproducibilidad de los Resultados , Estados Unidos , United States Environmental Protection Agency
2.
J Environ Monit ; 13(4): 999-1007, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21327247

RESUMEN

Passive air sampling for nitrogen dioxide (NO(2)) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established to assess intra-urban gradients of air pollutants to evaluate the impact of traffic and urban emissions on air quality. Ambient air monitoring and GIS data from spatially representative fire station sites were collected to assess spatial variability. Pairwise comparisons were conducted on the ambient data from the selected sites based on city section. These weeklong samples yielded NO(2) and benzene levels that were generally higher during the winter than the summer. With respect to the location within the city, the central section of Dallas was generally higher for NO(2) and benzene than north and south. Land use regression (LUR) results revealed spatial gradients in NO(2) and selected VOCs in the central and some northern areas. The process used to select spatially representative sites for air sampling and the results of analyses of coarse- and fine-scale spatial variability of air pollutants on a seasonal basis provide insights to guide future ambient air exposure studies in assessing intra-urban gradients and traffic impacts.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Texas
3.
Environ Res ; 109(8): 943-51, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19733844

RESUMEN

On August 29, 2005, Hurricane Katrina made landfall near New Orleans, Louisiana, a major metroplex with petroleum industries. In response to the potential impact of the storm on air quality and to assess the exposures to toxic air pollutants of public health concern, the United States Environmental Protection Agency conducted passive monitoring of air toxics for three months, starting in late October 2005 through early February 2006, at up to 18 sites in the New Orleans area affected by Hurricane Katrina. The overall results of the passive ambient monitoring are summarized with the concentrations for the twenty-nine observed volatile organic chemicals, which include benzene, toluene, ethylbenzene, and xylenes, and the measured concentrations are compared with available health-based screening levels. The results of passive monitoring are also compared with those of the collocated canister sampling at one of the sites. The overall results showed that the outdoor levels of atmospheric volatile organic chemcals in the post-Katrina New Orleans area were very low and far below the available screening levels. The results also confirm the effectiveness of passive monitoring in a large geographical area where conventional methods are not feasible, electrical power is not available, and the need for sampling is urgent, as in the aftermath of natural disasters and other catastrophes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Tormentas Ciclónicas , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Louisiana , Control de Calidad
4.
J Air Waste Manag Assoc ; 58(10): 1303-10, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18939777

RESUMEN

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Texas , Estados Unidos , United States Environmental Protection Agency , Salud Urbana
5.
Environ Monit Assess ; 128(1-3): 369-79, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17057989

RESUMEN

In the summer of 2003, ambient air concentrations of volatile organic compounds (VOCs) were measured at 12 sites within a 3-km radius in Deer Park, Texas near Houston. The purpose of the study was to assess local spatial influence of traffic and other urban sources and was part of a larger investigation of VOC spatial and temporal heterogeneity influences in selected areas of Houston. Seventy 2-h samples were collected using passive organic vapor monitors. Most measurements of 13 VOC species were greater than the method detection limits. Samplers were located at 10 residential sites, a regulatory air monitoring station, and a site located at the centroid of the census tract in which the regulatory station was located. For residential sites, sampler placement locations (e. g., covered porch vs. house eaves) had no effect on concentration with the exception of methyl tertiary-butyl ether (MTBE). Relatively high correlations (Pearson r > 0.8) were found between toluene, ethylbenzene, and o,m,p-xylenes suggesting petroleum-related influence. Chloroform was not correlated with these species or benzene (Pearson r < 0.35) suggesting a different source influence, possibly from process-related activities. As shown in other spatial studies, wind direction relative to source location had an effect on VOC concentrations.


Asunto(s)
Compuestos Orgánicos/análisis , Sensibilidad y Especificidad , Texas , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA