Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(5): 1124-1140.e9, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38636522

RESUMEN

Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Factores Reguladores del Interferón , Proteína Jagged-2 , Neoplasias Pulmonares , Ratones Noqueados , Macrófagos Asociados a Tumores , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Proteína Jagged-2/inmunología , Animales , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ratones , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Transducción de Señal , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Escape del Tumor/inmunología
2.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446025

RESUMEN

The prevalence of obesity, defined as the body mass index (BMI) ≥ 30 kg/m2, has reached epidemic levels. Obesity is associated with an increased risk of various cancers, including gastrointestinal ones. Recent evidence has suggested that obesity disproportionately impacts males and females with cancer, resulting in varied transcriptional and metabolic dysregulation. This study aimed to elucidate the differences in the metabolic milieu of adenocarcinomas of the gastrointestinal (GI) tract both related and unrelated to sex in obesity. To demonstrate these obesity and sex-related effects, we utilized three primary data sources: serum metabolomics from obese and non-obese patients assessed via the Biocrates MxP Quant 500 mass spectrometry-based kit, the ORIEN tumor RNA-sequencing data for all adenocarcinoma cases to assess the impacts of obesity, and publicly available TCGA transcriptional analysis to assess GI cancers and sex-related differences in GI cancers specifically. We applied and integrated our unique transcriptional metabolic pipeline in combination with our metabolomics data to reveal how obesity and sex can dictate differential metabolism in patients. Differentially expressed genes (DEG) analysis of ORIEN obese adenocarcinoma as compared to normal-weight adenocarcinoma patients resulted in large-scale transcriptional reprogramming (4029 DEGs, adj. p < 0.05 and |logFC| > 0.58). Gene Set Enrichment and metabolic pipeline analysis showed genes enriched for pathways relating to immunity (inflammation, and CD40 signaling, among others) and metabolism. Specifically, we found alterations to steroid metabolism and tryptophan/kynurenine metabolism in obese patients, both of which are highly associated with disease severity and immune cell dysfunction. These findings were further confirmed using the TCGA colorectal adenocarcinoma (CRC) and esophageal adenocarcinoma (ESCA) data, which showed similar patterns of increased tryptophan catabolism for kynurenine production in obese patients. These patients further showed disparate alterations between males and females when comparing obese to non-obese patient populations. Alterations to immune and metabolic pathways were validated in six patients (two obese and four normal weight) via CD8+/CD4+ peripheral blood mononuclear cell RNA-sequencing and paired serum metabolomics, which showed differential kynurenine and lipid metabolism, which corresponded with altered T-cell transcriptome in obese populations. Overall, obesity is associated with differential transcriptional and metabolic programs in various disease sites. Further, these alterations, such as kynurenine and tryptophan metabolism, which impact both metabolism and immune phenotype, vary with sex and obesity together. This study warrants further in-depth investigation into obesity and sex-related alterations in cancers that may better define biomarkers of response to immunotherapy.


Asunto(s)
Adenocarcinoma , Neoplasias Gastrointestinales , Masculino , Femenino , Humanos , Quinurenina , Triptófano , Leucocitos Mononucleares , Obesidad/genética , Neoplasias Gastrointestinales/genética
3.
Plant Cell ; 27(11): 3065-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26546445

RESUMEN

The best-characterized members of the plant-specific SIAMESE-RELATED (SMR) family of cyclin-dependent kinase inhibitors regulate the transition from the mitotic cell cycle to endoreplication, also known as endoreduplication, an altered version of the cell cycle in which DNA is replicated without cell division. Some other family members are implicated in cell cycle responses to biotic and abiotic stresses. However, the functions of most SMRs remain unknown, and the specific cyclin-dependent kinase complexes inhibited by SMRs are unclear. Here, we demonstrate that a diverse group of SMRs, including an SMR from the bryophyte Physcomitrella patens, can complement an Arabidopsis thaliana siamese (sim) mutant and that both Arabidopsis SIM and P. patens SMR can inhibit CDK activity in vitro. Furthermore, we show that Arabidopsis SIM can bind to and inhibit both CDKA;1 and CDKB1;1. Finally, we show that SMR2 acts to restrict cell proliferation during leaf growth in Arabidopsis and that SIM, SMR1/LGO, and SMR2 play overlapping roles in controlling the transition from cell division to endoreplication during leaf development. These results indicate that differences in SMR function in plant growth and development are primarily due to differences in transcriptional and posttranscriptional regulation, rather than to differences in fundamental biochemical function.


Asunto(s)
Secuencia Conservada , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Embryophyta/metabolismo , Familia de Multigenes , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Fenómenos Biomecánicos , Muerte Celular , Proliferación Celular , Embryophyta/genética , Endorreduplicación , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Unión Proteica , Protoplastos/metabolismo , Tricomas/citología , Tricomas/metabolismo , Tricomas/ultraestructura
4.
Plant Physiol ; 170(1): 515-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26561564

RESUMEN

Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/inmunología , Proteínas de Ciclo Celular/genética , Inmunidad Innata/genética , Proteínas Nucleares/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclinas/genética , Ciclinas/inmunología , Ciclinas/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Ploidias , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo
5.
PLoS Genet ; 7(7): e1002157, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21811412

RESUMEN

The mammalian Cdkn2a (Ink4a-Arf) locus encodes two tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb) and the p53 transcription factor in response to oncogenic stress. Although p19(Arf) is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf) in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Espermatogonias/metabolismo , Espermatozoides/metabolismo , Animales , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Técnica del Anticuerpo Fluorescente , Hormona Folículo Estimulante/sangre , Histonas/metabolismo , Immunoblotting , Hormona Luteinizante/sangre , Masculino , Meiosis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitosis , Proteínas Nucleares/metabolismo , Proteínas de Unión a Fosfato , Recombinasa Rad51/metabolismo , Espermatogonias/citología , Testículo/citología , Testículo/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Neurooncol Adv ; 6(1): vdae046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665799

RESUMEN

Background: Glioblastoma exhibits aggressive growth and poor outcomes despite treatment, and its marked variability renders therapeutic design and prognostication challenging. The Oncology Research Information Exchange Network (ORIEN) database contains complementary clinical, genomic, and transcriptomic profiling of 206 glioblastoma patients, providing opportunities to identify novel associations between molecular features and clinical outcomes. Methods: Survival analyses were performed using the Logrank test, and clinical features were evaluated using Wilcoxon and chi-squared tests with q-values derived via Benjamini-Hochberg correction. Mutational analyses utilized sample-level enrichments from whole exome sequencing data, and statistical tests were performed using the one-sided Fisher Exact test with Benjamini-Hochberg correction. Transcriptomic analyses utilized a student's t-test with Benjamini-Hochberg correction. Expression fold changes were processed with Ingenuity Pathway Analysis to determine pathway-level alterations between groups. Results: Key findings include an association of MUC17, SYNE1, and TENM1 mutations with prolonged overall survival (OS); decreased OS associated with higher epithelial growth factor receptor (EGFR) mRNA expression, but not with EGFR amplification or mutation; a 14-transcript signature associated with OS > 2 years; and 2 transcripts associated with OS < 1 year. Conclusions: Herein, we report the first clinical, genomic, and transcriptomic analysis of ORIEN glioblastoma cases, incorporating sample reclassification under updated 2021 diagnostic criteria. These findings create multiple avenues for further investigation and reinforce the value of multi-institutional consortia such as ORIEN in deepening our knowledge of intractable diseases such as glioblastoma.

7.
Cancer Res Commun ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904265

RESUMEN

Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA-seq data from the Oncology Research Information Exchange Network (ORIEN) database of colorectal cancer (CRC) patients treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 CRC cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, where tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-trophic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia appears to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes.

8.
Cancer Res Commun ; 4(2): 293-302, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38259095

RESUMEN

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE: Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.


Asunto(s)
Microbiota , Humanos , Filogenia , Microbiota/genética , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento
9.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894280

RESUMEN

BACKGROUND: We aimed to determine the prognostic value of an immunoscore reflecting CD3+ and CD8+ T cell density estimated from real-world transcriptomic data of a patient cohort with advanced malignancies treated with immune checkpoint inhibitors (ICIs) in an effort to validate a reference for future machine learning-based biomarker development. METHODS: Transcriptomic data was collected under the Total Cancer Care Protocol (NCT03977402) Avatar® project. The real-world immunoscore for each patient was calculated based on the estimated densities of tumor CD3+ and CD8+ T cells utilizing CIBERSORTx and the LM22 gene signature matrix. Then, the immunoscore association with overall survival (OS) was estimated using Cox regression and analyzed using Kaplan-Meier curves. The OS predictions were assessed using Harrell's concordance index (C-index). The Youden index was used to identify the optimal cut-off point. Statistical significance was assessed using the log-rank test. RESULTS: Our study encompassed 522 patients with four cancer types. The median duration to death was 10.5 months for the 275 participants who encountered an event. For the entire cohort, the results demonstrated that transcriptomics-based immunoscore could significantly predict patients at risk of death (p-value < 0.001). Notably, patients with an intermediate-high immunoscore achieved better OS than those with a low immunoscore. In subgroup analysis, the prediction of OS was significant for melanoma and head and neck cancer patients but did not reach significance in the non-small cell lung cancer or renal cell carcinoma cohorts. CONCLUSIONS: Calculating CD3+ and CD8+ T cell immunoscore using real-world transcriptomic data represents a promising signature for estimating OS with ICIs and can be used as a reference for future machine learning-based biomarker development.

10.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747658

RESUMEN

Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.

11.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292921

RESUMEN

Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICIs). Baseline tumor samples were collected from 71 patients with metastatic melanoma before treatment with ICIs. Bulk RNA-seq was conducted on the formalin-fixed paraffin-embedded (FFPE) tumor samples. Durable clinical benefit (primary clinical endpoint) following ICIs was defined as overall survival ≥24 months and no change to the primary drug regimen (responders). We processed RNA-seq reads to carefully identify exogenous sequences using the {exotic} tool. The 71 patients with metastatic melanoma ranged in age from 24 to 83 years, 59% were male, and 55% survived >24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances in immunotherapy responsive versus non-responsive tumors. Responders showed significant enrichment of several microbes including Fusobacterium nucleatum, and non-responders showed enrichment of fungi, as well as several bacteria. These microbes correlated with immune-related gene expression signatures. Finally, we found that models for predicting prolonged survival with immunotherapy using both microbe abundances and gene expression outperformed models using either dataset alone. Our findings warrant further investigation and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs.

12.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292990

RESUMEN

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.

13.
Proc Natl Acad Sci U S A ; 106(15): 6285-90, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19339492

RESUMEN

The Arf tumor suppressor is expressed transiently during mouse male germ cell and eye development. Its inactivation compromises spermatogenesis as mice age and leads to aberrant postnatal proliferation of cells in the vitreous of the eye, resulting in blindness. In the testis, expression of p19(Arf) is limited to spermatogonia but is extinguished completely in spermatocytes, suggesting that Arf plays a physiologic role in setting the balance between mitotic and meiotic germ cell division. A knock-in allele encoding Cre recombinase regulated by the mouse cellular Arf promoter was used to trace Arf gene induction in vivo. Interbreeding to a reporter strain that expresses Cre-dependent YFP provided proof-of-principle that the Arf-Cre allele was appropriately expressed in the male germ cell lineage. However, Cre expression resulted in male sterility, limiting germ line transmission of the knock-in allele to females. Arf-null mice fail to resorb the hyaloid vasculature within the ocular vitreous where pericyte-like cells that express the PDGF-beta receptor (Pdgfrbeta) proliferate aberrantly and destroy the retina and lens. Interbreeding of Arf-Cre females to males containing "floxed" (FL) Arf alleles yielded Arf(Cre/FL) progeny that exhibited variably penetrant defects in visual acuity ranging to total blindness. Crossing the Arf(Cre/FL) alleles onto a Pdgfrbeta(FL/FL) background normalized all histopathology and restored vision fully.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ojo/metabolismo , Genes Reporteros/genética , Células Germinativas/metabolismo , Integrasas/metabolismo , Animales , Animales Modificados Genéticamente , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Genotipo , Integrasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
14.
Biomolecules ; 12(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358918

RESUMEN

In the past decade, defective DNA repair has been increasingly linked with cancer progression. Human tumors with markers of defective DNA repair and increased replication stress exhibit genomic instability and poor survival rates across tumor types. Seminal studies have demonstrated that genomic instability develops following inactivation of BRCA1, BRCA2, or BRCA-related genes. However, it is recognized that many tumors exhibit genomic instability but lack BRCA inactivation. We sought to identify a pan-cancer mechanism that underpins genomic instability and cancer progression in BRCA-wildtype tumors. Methods: Using multi-omics data from two independent consortia, we analyzed data from dozens of tumor types to identify patient cohorts characterized by poor outcomes, genomic instability, and wildtype BRCA genes. We developed several novel metrics to identify the genetic underpinnings of genomic instability in tumors with wildtype BRCA. Associated clinical data was mined to analyze patient responses to standard of care therapies and potential differences in metastatic dissemination. Results: Systematic analysis of the DNA repair landscape revealed that defective single-strand break repair, translesion synthesis, and non-homologous end-joining effectors drive genomic instability in tumors with wildtype BRCA and BRCA-related genes. Importantly, we find that loss of these effectors promotes replication stress, therapy resistance, and increased primary carcinoma to brain metastasis. Conclusions: Our results have defined a new pan-cancer class of tumors characterized by replicative instability (RIN). RIN is defined by the accumulation of intra-chromosomal, gene-level gain and loss events at replication stress sensitive (RSS) genome sites. We find that RIN accelerates cancer progression by driving copy number alterations and transcriptional program rewiring that promote tumor evolution. Clinically, we find that RIN drives therapy resistance and distant metastases across multiple tumor types.


Asunto(s)
Inestabilidad Genómica , Neoplasias , Humanos , Reparación del ADN/genética , Reparación del ADN por Unión de Extremidades , Neoplasias/genética , Replicación del ADN , Aberraciones Cromosómicas
15.
Blood Adv ; 3(7): 1039-1046, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30940639

RESUMEN

Recent studies have identified germline mutations in TP53, PAX5, ETV6, and IKZF1 in kindreds with familial acute lymphoblastic leukemia (ALL), but the genetic basis of ALL in many kindreds is unknown despite mutational analysis of the exome. Here, we report a germline deletion of ETV6 identified by linkage and structural variant analysis of whole-genome sequencing data segregating in a kindred with thrombocytopenia, B-progenitor acute lymphoblastic leukemia, and diffuse large B-cell lymphoma. The 75-nt deletion removed the ETV6 exon 7 splice acceptor, resulting in exon skipping and protein truncation. The ETV6 deletion was also identified by optimal structural variant analysis of exome sequencing data. These findings identify a new mechanism of germline predisposition in ALL and implicate ETV6 germline variation in predisposition to lymphoma. Importantly, these data highlight the importance of germline structural variant analysis in the search for germline variants predisposing to familial leukemia.


Asunto(s)
Mutación de Línea Germinal , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Eliminación de Secuencia , Análisis Mutacional de ADN , Exoma/genética , Familia , Predisposición Genética a la Enfermedad , Humanos , Linfoma de Células B Grandes Difuso/genética , Trombocitopenia/genética , Proteína ETS de Variante de Translocación 6
16.
Nat Genet ; 51(2): 296-307, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643249

RESUMEN

Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis.


Asunto(s)
Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Enfermedad Aguda , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Cromosomas/genética , Femenino , Reordenamiento Génico/genética , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutación/genética , Transcriptoma/genética , Adulto Joven
17.
Cancer Cell ; 33(5): 937-948.e8, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29681510

RESUMEN

Somatic genetic alterations of IKZF1, which encodes the lymphoid transcription factor IKAROS, are common in high-risk B-progenitor acute lymphoblastic leukemia (ALL) and are associated with poor prognosis. Such alterations result in the acquisition of stem cell-like features, overexpression of adhesion molecules causing aberrant cell-cell and cell-stroma interaction, and decreased sensitivity to tyrosine kinase inhibitors. Here we report coding germline IKZF1 variation in familial childhood ALL and 0.9% of presumed sporadic B-ALL, identifying 28 unique variants in 45 children. The majority of variants adversely affected IKZF1 function and drug responsiveness of leukemic cells. These results identify IKZF1 as a leukemia predisposition gene, and emphasize the importance of germline genetic variation in the development of both familial and sporadic ALL.


Asunto(s)
Mutación de Línea Germinal , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animales , Niño , Femenino , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Linaje , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Análisis de Secuencia de ADN
18.
Exp Hematol ; 46: 1-8, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27865806

RESUMEN

Genetic alterations of IKZF1 encoding the lymphoid transcription factor IKAROS are a hallmark of high-risk B-progenitor acute lymphoblastic leukemia (ALL), such as BCR-ABL1-positive (Ph+) and Ph-like ALL, and are associated with poor outcome even in the era of contemporary chemotherapy incorporating tyrosine kinase inhibitors. Recent experimental mouse modeling of B-progenitor ALL has shown that IKZF1 alterations have multiple effects, including arresting differentiation, skewing lineage of leukemia from myeloid to lymphoid, and, in Ph+ leukemia, conferring resistance to tyrosine kinase inhibitor (TKI) therapy without abrogating ABL1 inhibition. These effects are in part mediated by acquisition of an aberrant hematopoietic stem cell-like program accompanied by induction of cell surface expression of stem cell and adhesion molecules that mediate extravascular invasion and residence in the niche and activation of integrin signaling pathways. These effects can be exploited therapeutically using several approaches. IKZF1 alterations also result in upregulation of RXRA that encodes part of the heterodimeric retinoic acid X receptor. Rexinoids, a synthetic class of retinoids that bind specifically to retinoid "X" receptors such as bexarotene potently reverse aberrant adhesion and niche mislocalization in vivo and induce differentiation and cell cycle arrest. Focal adhesion kinase inhibitors block the downstream integrin-mediated signaling, reverse adhesion, and niche mislocalization. Both agents act synergistically with TKIs to prolong survival of Ph+ ALL in mouse and human xenograft model, with long-term remission induced by focal adhesion kinase inhibitors. Therefore, these findings provide important new conceptual insights into the mechanisms by which IKZF1 alterations result in drug resistance and indicate that therapeutic strategies directed against the pathways deregulated by mutation, rather than attempting to restore IKZF1 expression directly, represent promising therapeutic approaches in this disease.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Factor de Transcripción Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Nicho de Células Madre , Animales , Adhesión Celular , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación Leucémica de la Expresión Génica , Variación Genética , Humanos , Factor de Transcripción Ikaros/antagonistas & inhibidores , Factor de Transcripción Ikaros/química , Factor de Transcripción Ikaros/genética , Terapia Molecular Dirigida , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Transducción de Señal , Mutaciones Letales Sintéticas
19.
Clin Cancer Res ; 23(24): 7558-7568, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28974549

RESUMEN

Purpose: BCR-ABL+ B-ALL leukemic cells are highly dependent on the expression of endogenous antiapoptotic MCL-1 to promote viability and are resistant to BH3-mimetic agents such as navitoclax (ABT-263) that target BCL-2, BCL-XL, and BCL-W. However, the survival of most normal blood cells and other cell types is also dependent on Mcl-1 Despite the requirement for MCL-1 in these cell types, initial reports of MCL-1-specific BH3-mimetics have not described any overt toxicities associated with single-agent use, but these agents are still early in clinical development. Therefore, we sought to identify approved drugs that could sensitize leukemic cells to ABT-263.Experimental Design: A screen identified dihydroartemisinin (DHA), a water-soluble metabolite of the antimalarial artemisinin. Using mouse and human leukemic cell lines, and primary patient-derived xenografts, the effect of DHA on survival was tested, and mechanistic studies were carried out to discover how DHA functions. We further tested in vitro and in vivo whether combining DHA with ABT-263 could enhance the response of leukemic cells to combination therapy.Results: DHA causes the downmodulation of MCL-1 expression by triggering a cellular stress response that represses translation. The repression of MCL-1 renders leukemic cells highly sensitive to synergistic cell death induced by ABT-263 in a mouse model of BCR-ABL+ B-ALL both in vitro and in vivo Furthermore, DHA synergizes with ABT-263 in human Ph+ ALL cell lines, and primary patient-derived xenografts of Ph+ ALL in culture.Conclusions: Our findings suggest that combining DHA with ABT-263 can improve therapeutic response in BCR-ABL+ B-ALL. Clin Cancer Res; 23(24); 7558-68. ©2017 AACR.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Proteínas de Fusión bcr-abl/genética , Leucemia de Células B/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Sulfonamidas/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Artemisininas/administración & dosificación , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia de Células B/genética , Leucemia de Células B/patología , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
JCI Insight ; 1(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27123491

RESUMEN

BCR-ABL1+ B progenitor acute lymphoblastic leukemia (Ph+ B-ALL) is an aggressive disease that frequently responds poorly to currently available therapies. Alterations in IKZF1, which encodes the lymphoid transcription factor Ikaros, are present in over 80% of Ph+ ALL and are associated with a stem cell-like phenotype, aberrant adhesion molecule expression and signaling, leukemic cell adhesion to the bone marrow stem cell niche, and poor outcome. Here, we show that FAK1 is upregulated in Ph+ B-ALL with further overexpression in IKZF1-altered cells and that the FAK inhibitor VS-4718 potently inhibits aberrant FAK signaling and leukemic cell adhesion, potentiating responsiveness to tyrosine kinase inhibitors, inducing cure in vivo. Thus, targeting FAK with VS-4718 is an attractive approach to overcome the deleterious effects of FAK overexpression in Ph+ B-ALL, particularly in abrogating the adhesive phenotype induced by Ikaros alterations, and warrants evaluation in clinical trials for Ph+ B-ALL, regardless of IKZF1 status.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA