Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Bioinformatics ; 23(Suppl 8): 424, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241988

RESUMEN

BACKGROUND: RNA deleterious point mutation prediction was previously addressed with programs such as RNAmute and MultiRNAmute. The purpose of these programs is to predict a global conformational rearrangement of the secondary structure of a functional RNA molecule, thereby disrupting its function. RNAmute was designed to deal with only single point mutations in a brute force manner, while in MultiRNAmute an efficient approach to deal with multiple point mutations was developed. The approach used in MultiRNAmute is based on the stabilization of the suboptimal RNA folding prediction solutions and/or destabilization of the optimal folding prediction solution of the wild type RNA molecule. The MultiRNAmute algorithm is significantly more efficient than the brute force approach in RNAmute, but in the case of long sequences and large m-point mutation sets the MultiRNAmute becomes exponential in examining all possible stabilizing and destabilizing mutations. RESULTS: An inherent limitation in the RNAmute and MultiRNAmute programs is their ability to predict only substitution mutations, as these programs were not designed to work with deletion or insertion mutations. To address this limitation we herein develop a very fast algorithm, based on suboptimal folding solutions, to predict a predefined number of multiple point deleterious mutations as specified by the user. Depending on the user's choice, each such set of mutations may contain combinations of deletions, insertions and substitution mutations. Additionally, we prove the hardness of predicting the most deleterious set of point mutations in structural RNAs. CONCLUSIONS: We developed a method that extends our previous MultiRNAmute method to predict insertion and deletion mutations in addition to substitutions. The additional advantage of the new method is its efficiency to find a predefined number of deleterious mutations. Our new method may be exploited by biologists and virologists prior to site-directed mutagenesis experiments, which involve indel mutations along with substitutions. For example, our method may help to investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure.


Asunto(s)
Mutación INDEL , ARN , Mutación , Mutación Puntual , ARN/química , ARN/genética , Análisis de Secuencia de ARN
2.
Bioinformatics ; 36(9): 2920-2922, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971575

RESUMEN

SUMMARY: RNA design has conceptually evolved from the inverse RNA folding problem. In the classical inverse RNA problem, the user inputs an RNA secondary structure and receives an output RNA sequence that folds into it. Although modern RNA design methods are based on the same principle, a finer control over the resulting sequences is sought. As an important example, a substantial number of non-coding RNA families show high preservation in specific regions, while being more flexible in others and this information should be utilized in the design. By using the additional information, RNA design tools can help solve problems of practical interest in the growing fields of synthetic biology and nanotechnology. incaRNAfbinv 2.0 utilizes a fragment-based approach, enabling a control of specific RNA secondary structure motifs. The new version allows significantly more control over the general RNA shape, and also allows to express specific restrictions over each motif separately, in addition to other advanced features. AVAILABILITY AND IMPLEMENTATION: incaRNAfbinv 2.0 is available through a standalone package and a web-server at https://www.cs.bgu.ac.il/incaRNAfbinv. Source code, command-line and GUI wrappers can be found at https://github.com/matandro/RNAsfbinv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ARN , Programas Informáticos , Motivos de Nucleótidos , ARN/genética , Pliegue del ARN , Análisis de Secuencia de ARN
3.
J Infect Dis ; 222(7): 1165-1169, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32363394

RESUMEN

We recently showed in a proof-of-concept study that real-time modeling-based response-guided therapy can shorten hepatitis C virus treatment duration with sofosbuvir-velpatasvir, elbasvir-grazoprevir, and sofosbuvir-ledipasvir without compromising efficacy, confirming our retrospective modeling reports in >200 patients. However, retrospective modeling of pibrentasvir-glecaprevir (P/G) treatment has yet to be evaluated. In the current study, modeling hepatitis C virus kinetics in 44 cirrhotic and noncirrhotic patients predicts that P/G treatment might have been reduced to 4, 6, and 7 weeks in 16%, 34%, and 14% of patients, respectively. These results support the further evaluation of a modeling-based response-guided therapy approach using P/G.


Asunto(s)
Antivirales/administración & dosificación , Bencimidazoles/administración & dosificación , Hepatitis C Crónica/tratamiento farmacológico , Pirrolidinas/administración & dosificación , Quinoxalinas/administración & dosificación , Sulfonamidas/administración & dosificación , Anciano , Anciano de 80 o más Años , Amidas/administración & dosificación , Carbamatos/administración & dosificación , Ciclopropanos/administración & dosificación , Esquema de Medicación , Combinación de Medicamentos , Quimioterapia Combinada , Duración de la Terapia , Femenino , Fluorenos/administración & dosificación , Humanos , Cinética , Masculino , Persona de Mediana Edad , Modelos Teóricos , ARN Viral/sangre , Estudios Retrospectivos , Sofosbuvir/administración & dosificación , Respuesta Virológica Sostenida , Factores de Tiempo
4.
Brief Bioinform ; 19(2): 350-358, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049135

RESUMEN

Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.


Asunto(s)
Algoritmos , Conformación de Ácido Nucleico , Pliegue del ARN , ARN/química , Programas Informáticos , Animales , Biología Computacional/métodos , Humanos , Modelos Moleculares
5.
Bull Math Biol ; 81(10): 3675-3721, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31338739

RESUMEN

Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C Crónica/virología , Modelos Biológicos , Antivirales/uso terapéutico , Simulación por Computador , Hepatitis C Crónica/terapia , Humanos , Cinética , Conceptos Matemáticos
6.
Brief Bioinform ; 12(2): 104-14, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21422070

RESUMEN

Programs for RNA mutational analysis that are structure-based and rely on secondary structure prediction have been developed and expanded in the past several years. They can be used for a variety of purposes, such as in suggesting point mutations that will alter RNA virus replication or translation initiation, investigating the effect of deleterious and compensatory mutations in allosteric ribozymes and riboswitches, computing an optimal path of mutations to get from one ribozyme fold to another, or analyzing regulatory RNA sequences by their mutational profile. This review describes three different freeware programs (RNAMute, RDMAS and RNAmutants) that have been developed for such purposes. RNAMute and RDMAS in principle perform energy minimization prediction by available software such as RNAfold from the Vienna RNA package or Zuker's Mfold, while RNAmutants provides an efficient method using essential ingredients from energy minimization prediction. Both RNAMute in its extended version that uses RNAsubopt from the Vienna RNA package and the RNAmutants software are able to predict multiple-point mutations using developed methodologies, while RDMAS is currently restricted to single-point mutations. The strength of RNAMute in its extended version is the ability to predict a small number of point mutations in an accurate manner. RNAmutants is well fit for large scale simulations involving the calculation of all k-mutants, where k can be a large integer number, of a given RNA sequence.


Asunto(s)
Genómica/métodos , Mutación , ARN/química , Programas Informáticos , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/genética , Análisis de Secuencia de ARN
7.
Nucleic Acids Res ; 39(Web Server issue): W92-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21478166

RESUMEN

RNA mutational analysis at the secondary-structure level can be useful to a wide-range of biological applications. It can be used to predict an optimal site for performing a nucleotide mutation at the single molecular level, as well as to analyze basic phenomena at the systems level. For the former, as more sequence modification experiments are performed that include site-directed mutagenesis to find and explore functional motifs in RNAs, a pre-processing step that helps guide in planning the experiment becomes vital. For the latter, mutations are generally accepted as a central mechanism by which evolution occurs, and mutational analysis relating to structure should gain a better understanding of system functionality and evolution. In the past several years, the program RNAmute that is structure based and relies on RNA secondary-structure prediction has been developed for assisting in RNA mutational analysis. It has been extended from single-point mutations to treat multiple-point mutations efficiently by initially calculating all suboptimal solutions, after which only the mutations that stabilize the suboptimal solutions and destabilize the optimal one are considered as candidates for being deleterious. The RNAmute web server for mutational analysis is available at http://www.cs.bgu.ac.il/~xrnamute/XRNAmute.


Asunto(s)
Mutación , ARN/química , Programas Informáticos , Conformación de Ácido Nucleico , Análisis de Secuencia de ARN , Interfaz Usuario-Computador
8.
Mathematics (Basel) ; 10(12)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36245949

RESUMEN

Mathematical models, some of which incorporate both intracellular and extracellular hepatitis C viral kinetics, have been advanced in recent years for studying HCV-host dynamics, antivirals mode of action, and their efficacy. The standard ordinary differential equation (ODE) hepatitis C virus (HCV) kinetic model keeps track of uninfected cells, infected cells, and free virus. In multiscale models, a fourth partial differential equation (PDE) accounts for the intracellular viral RNA (vRNA) kinetics in an infected cell. The PDE multiscale model is substantially more difficult to solve compared to the standard ODE model, with governing differential equations that are stiff. In previous contributions, we developed and implemented stable and efficient numerical methods for the multiscale model for both the solution of the model equations and parameter estimation. In this contribution, we perform sensitivity analysis on model parameters to gain insight into important properties and to ensure our numerical methods can be safely used for HCV viral dynamic simulations. Furthermore, we generate in-silico patients using the multiscale models to perform machine learning from the data, which enables us to remove HCV measurements on certain days and still be able to estimate meaningful observations with a sufficiently small error.

9.
Mathematics (Basel) ; 10(20)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36540372

RESUMEN

Hepatitis D virus is an infectious subviral agent that can only propagate in people infected with hepatitis B virus. In this study, we modified and further developed a recent model for early hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical solutions were provided to highlight the new features of the modified model. The improved model offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.

10.
Math Biosci ; 343: 108756, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883104

RESUMEN

Mathematical models for hepatitis C virus (HCV) dynamics have provided a means for evaluating the antiviral effectiveness of therapy and estimating treatment outcomes such as the time to cure. Recently, a mathematical modeling approach was used in the first proof-of-concept clinical trial assessing in real-time the utility of response-guided therapy with direct-acting antivirals (DAAs) in chronic HCV-infected patients. Several retrospective studies have shown that mathematical modeling of viral kinetics predicts time to cure of less than 12 weeks in the majority of individuals treated with sofosbuvir-based as well as other DAA regimens. A database of these studies was built, and machine learning methods were evaluated for their ability to estimate the time to cure for each patient to facilitate real-time modeling studies. Data from these studies exploring mathematical modeling of HCV kinetics under DAAs in 266 chronic HCV-infected patients were gathered. Different learning methods were applied and trained on part of the dataset ('train' set), to predict time to cure on the untrained part ('test' set). Our results show that this machine learning approach provides a means for establishing an accurate time to cure prediction that will support the implementation of individualized treatment.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Antivirales/uso terapéutico , Quimioterapia Combinada , Hepacivirus , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Cinética , Aprendizaje Automático , Modelos Teóricos , Estudios Retrospectivos , Resultado del Tratamiento
11.
BMC Bioinformatics ; 12: 319, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21813013

RESUMEN

BACKGROUND: RNAexinv is an interactive java application that performs RNA sequence design, constrained to yield a specific RNA shape and physical attributes. It is an extended inverse RNA folding program with the rationale behind that the generated sequences should not only fold into a desired structure, but they should also exhibit favorable attributes such as thermodynamic stability and mutational robustness. RNAexinv considers not only the secondary structure in order to design sequences, but also the mutational robustness and the minimum free energy. The sequences that are generated may not fully conform with the given RNA secondary structure, but they will strictly conform with the RNA shape of the given secondary structure and thereby take into consideration the recommended values of thermodynamic stability and mutational robustness that are provided. RESULTS: The output consists of designed sequences that are generated by the proposed method. Selecting a sequence displays the secondary structure drawings of the target and the predicted fold of the sequence, including some basic information about the desired and achieved thermodynamic stability and mutational robustness. RNAexinv can be used successfully without prior experience, simply specifying an initial RNA secondary structure in dot-bracket notation and numerical values for the desired neutrality and minimum free energy. The package runs under LINUX operating system. Secondary structure predictions are performed using the Vienna RNA package. CONCLUSIONS: RNAexinv is a user friendly tool that can be used for RNA sequence design. It is especially useful in cases where a functional stem-loop structure of a natural sequence should be strictly kept in the designed sequences but a distant motif in the rest of the structure may contain one more or less nucleotide at the expense of another, as long as the global shape is preserved. This allows the insertion of physical observables as constraints. RNAexinv is available at http://www.cs.bgu.ac.il/~RNAexinv.


Asunto(s)
Pliegue del ARN , ARN/química , Programas Informáticos , Algoritmos , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/genética , Termodinámica
12.
Mathematics (Basel) ; 9(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34540628

RESUMEN

Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35282153

RESUMEN

Hepatitis delta virus (HDV) is an infectious subviral agent that can only propagate in people infected with hepatitis B virus (HBV). HDV/HBV infection is considered to be the most severe form of chronic viral hepatitis. In this contribution, a mathematical model for the interplay between HDV and HBV under anti-HDV treatment is presented. Previous models were not designed to account for the observation that HBV rises when HDV declines with HDV-specific therapy. In the simple model presented here, HDV and HBV kinetics are coupled, giving rise to an improved viral kinetic model that simulates the early interplay of HDV and HBV during anti-HDV therapy.

14.
Mathematics (Basel) ; 8(9)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33224865

RESUMEN

Parameter estimation in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation that addresses all cases of data points available presents a formidable challenge and efficiency considerations need to be employed in order for the method to become practical. In the case of age-structured models of viral hepatitis dynamics under antiviral treatment that deal with partial differential equations, a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derivative approximations. The newly efficient methods that were developed as a result of the above approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary and partial differential equation models.

15.
AIP Conf Proc ; 22932020.
Artículo en Inglés | MEDLINE | ID: mdl-33349734

RESUMEN

Callibration in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation or fitting (callibration) that solves all cases of data points available presents a formidable challenge, as efficiency considerations need to be employed in order for the method to become practical. In the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derviative approximations. These steps that were successful in significantly speeding up a highly non-efficient approach, rendering it practical, can also be adapted to multiscale models of other viruses and other sophisticated differential equation models. The newly efficient methods that were developed as a result of the above approach are described. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for multiscale models. We provide a simulator called HCVMultiscaleFit with a Graphical User Interface that applies these methods and is useful to perform parameter estimation for simulating viral dynamics during antiviral treatment.

16.
Antiviral Res ; 180: 104862, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592829

RESUMEN

BACKGROUND & AIMS: Mathematical modeling of viral kinetics has been shown to identify patients with chronic hepatitis C virus (HCV) infection who could be cured with a shorter duration of direct-acting antiviral (DAA) treatment. However, modeling therapy duration has yet to be evaluated in recently infected individuals. The aim of this study was to retrospectively examine whether modeling can predict outcomes of six-week sofosbuvir (SOF) and weight-based ribavirin (R) therapy in individuals with recent HCV infection. METHODS: Modeling was used to estimate viral host parameters and to predict time to cure for 12 adults with recent HCV infection (<12 months of infection) who received six weeks of treatment with SOF + R. RESULTS: Modeling results yielded a 100% negative predictive value for SOF + R treatment response in nine participants and suggested that a median of 13 [interquartile range: 8-16] weeks of therapy would be required for these patients to achieve cure. Modeling predicted cure after 5 weeks of therapy in the only modeled participant who achieved a sustained virological response. However, cure was also predicted for two participants who relapsed following treatment. CONCLUSIONS: The modeling results confirm that longer than 6 weeks of SOF + R is needed to reach cure in individuals with recent HCV infection. Prospective real-time modeling under current potent DAA regimens is needed to validate the potential of response-guided therapy in the management of recent HCV infection.


Asunto(s)
Antivirales/uso terapéutico , Duración de la Terapia , Hepatitis C/tratamiento farmacológico , Modelos Teóricos , Adulto , Anciano , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , ARN Viral/sangre , Estudios Retrospectivos , Ribavirina/uso terapéutico , Sofosbuvir/uso terapéutico , Respuesta Virológica Sostenida , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
17.
BMC Bioinformatics ; 9: 222, 2008 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-18445289

RESUMEN

BACKGROUND: RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. RESULTS: Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. CONCLUSION: A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure. A complete explanation of the application, called MultiRNAmute, is available at [1].


Asunto(s)
Biología Computacional/métodos , Conformación de Ácido Nucleico , Mutación Puntual , ARN/química , ARN/ultraestructura , Diseño de Software , Termodinámica , Algoritmos , Animales , Biofisica/métodos , Simulación por Computador , Bases de Datos Genéticas , Hepacivirus/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida/métodos , Mutación Puntual/fisiología , Valor Predictivo de las Pruebas , Alineación de Secuencia , Análisis de Secuencia de ARN , Eliminación de Secuencia/fisiología , Tetrahymena thermophila/genética
18.
BMC Genomics ; 8: 2, 2007 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-17201911

RESUMEN

BACKGROUND: A promising application of the huge amounts of genetic data currently available lies in developing a better understanding of complex diseases, such as cancer. Analysis of publicly available databases can help identify potential candidates for genes or mutations specifically related to the cancer phenotype. In spite of their huge potential to affect gene function, no systematic attention has been paid so far to the changes that occur in untranslated regions of mRNA. RESULTS: In this study, we used Expressed Sequence Tag (EST) databases as a source for cancer-related sequence polymorphism discovery at the whole-genome level. Using a novel computational procedure, we focused on the identification of untranslated region (UTR)-localized non-coding Single Nucleotide Polymorphisms (UTR-SNPs) significantly associated with the tumoral state. To explore possible relationships between genetic mutation and phenotypic variation, bioinformatic tools were used to predict the potential impact of cancer-associated UTR-SNPs on mRNA secondary structure and UTR regulatory elements. We provide a comprehensive and unbiased description of cancer-associated UTR-SNPs that may be useful to define genotypic markers or to propose polymorphisms that can act to alter gene expression levels. Our results suggest that a fraction of cancer-associated UTR-SNPs may have functional consequences on mRNA stability and/or expression. CONCLUSION: We have undertaken a comprehensive effort to identify cancer-associated polymorphisms in untranslated regions of mRNA and to characterize putative functional UTR-SNPs. Alteration of translational control can change the expression of genes in tumor cells, causing an increase or decrease in the concentration of specific proteins. Through the description of testable candidates and the experimental validation of a number of UTR-SNPs discovered on the secreted protein acidic and rich in cysteine (SPARC) gene, this report illustrates the utility of a cross-talk between in silico transcriptomics and cancer genetics.


Asunto(s)
Genoma Humano/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Regiones no Traducidas/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Humanos , Leucemia Mieloide Aguda/genética , Conformación de Ácido Nucleico , Osteonectina/genética , ARN Mensajero/química , ARN Mensajero/genética , Regiones no Traducidas/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-30854378

RESUMEN

The multiscale model of hepatitis C virus (HCV) dynamics, which includes intracellular viral RNA (vRNA) replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

20.
BMC Bioinformatics ; 7: 221, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16638137

RESUMEN

BACKGROUND: RNAMute is an interactive Java application that calculates the secondary structure of all single point mutations, given an RNA sequence, and organizes them into categories according to their similarity with respect to the wild type predicted structure. The secondary structure predictions are performed using the Vienna RNA package. Several alternatives are used for the categorization of single point mutations: Vienna's RNAdistance based on dot-bracket representation, as well as tree edit distance and second eigenvalue of the Laplacian matrix based on Shapiro's coarse grain tree graph representation. RESULTS: Selecting a category in each one of the processed tables lists all single point mutations belonging to that category. Selecting a mutation displays a graphical drawing of the single point mutation and the wild type, and includes basic information such as associated energies, representations and distances. RNAMute can be used successfully with very little previous experience and without choosing any parameter value alongside the initial RNA sequence. The package runs under LINUX operating system. CONCLUSION: RNAMute is a user friendly tool that can be used to predict single point mutations leading to conformational rearrangements in the secondary structure of RNAs. In several cases of substantial interest, notably in virology, a point mutation may lead to a loss of important functionality such as the RNA virus replication and translation initiation because of a conformational rearrangement in the secondary structure.


Asunto(s)
Conformación de Ácido Nucleico , Mutación Puntual , ARN/química , Programas Informáticos , Animales , Biología Computacional , ARN/genética , ARN Protozoario/química , ARN Protozoario/genética , Análisis de Secuencia de ARN/métodos , Tetrahymena thermophila/genética , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA