Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Chem Soc Rev ; 53(9): 4707-4740, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38536022

RESUMEN

Millions of electric vehicles (EVs) on the road are powered by lithium-ion batteries (LIBs) based on nickel-rich layered oxide (NRLO) cathodes, and they suffer from a limited driving range and safety concerns. Increasing the Ni content is a key way to boost the energy densities of LIBs and alleviate the EV range anxiety, which are, however, compromised by the rapid performance fading. One unique challenge lies in the worsening of the microstructural stability with a rising Ni-content in the cathode. In this review, we focus on the latest advances in the understanding of NLRO microstructures, particularly the microstructural degradation mechanisms, state-of-the-art stabilization strategies, and advanced characterization methods. We first elaborate on the fundamental mechanisms underlying the microstructural failures of NRLOs, including anisotropic lattice evolution, microcracking, and surface degradation, as a result of which other degradation processes, such as electrolyte decomposition and transition metal dissolution, can be severely aggravated. Afterwards, we discuss representative stabilization strategies, including the surface treatment and construction of radial concentration gradients in polycrystalline secondary particles, the fabrication of rod-shaped primary particles, and the development of single-crystal NRLO cathodes. We then introduce emerging microstructural characterization techniques, especially for identification of the particle orientation, dynamic changes, and elemental distributions in NRLO microstructures. Finally, we provide perspectives on the remaining challenges and opportunities for the development of stable NRLO cathodes for the zero-carbon future.

2.
Small ; : e2310633, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279636

RESUMEN

Silicon-based materials have been considered potential anode materials for next-generation lithium-ion batteries based on their high theoretical capacity and low working voltage. However, side reactions at the Si/electrolyte interface bring annoying issues like low Coulombic efficiency, sluggish ionic transport, and inferior temperature compatibility. In this work, the surface Al2 O3 coating layer is proposed as an artificial solid electrolyte interphase (SEI), which can serve as a physical barrier against the invasion of byproducts like HF(Hydrogen Fluoride) from the decomposition of electrolyte, and acts as a fast Li-ion transport pathway. Besides, the intrinsically high mechanical strength can effectively inhibit the volume expansion of the silicon particles, thus promoting the cyclability. The as-assembled battery cell with the Al2 O3 -coated Si-C anode exhibits a high initial Coulombic efficiency of 80% at RT and a capacity retention ratio up to ≈81.9% after 100 cycles, which is much higher than that of the pristine Si-C anode (≈74.8%). Besides, the expansion rate can also be decreased from 103% to 50%. Moreover, the Al2 O3 -coated Si-C anode also extends the working temperature from room temperature to 0 °C-60 °C. Overall, this work provides an efficient strategy for regulating the interface reactions of Si-based anode and pushes forward the practical applications at real conditions.

3.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474575

RESUMEN

Li-rich manganese-based oxide (LRMO) cathode materials are considered to be one of the most promising candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity (250 mAh g-1) and low cost. However, the inevitable irreversible structural transformation during cycling leads to large irreversible capacity loss, poor rate performance, energy decay, voltage decay, etc. Based on the recent research into LRMO for LIBs, this review highlights the research progress of LRMO in terms of crystal structure, charging/discharging mechanism investigations, and the prospects of the solution of current key problems. Meanwhile, this review summarizes the specific modification strategies and their merits and demerits, i.e., surface coating, elemental doping, micro/nano structural design, introduction of high entropy, etc. Further, the future development trend and business prospect of LRMO are presented and discussed, which may inspire researchers to create more opportunities and new ideas for the future development of LRMO for LIBs with high energy density and an extended lifespan.

4.
Small ; 19(45): e2302934, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37475503

RESUMEN

All-solid-state lithium-ion batteries (ASSLBs) employing silicon (Si) anode and sulfide electrolyte attract much attention, since they can achieve both high energy density and safety. For large-scale application, sheet-type Si anode matching sulfide based ASSLBs is preferred. Here, a LiAlO2 layer coated Si (Si@LiAlO2 ) is reported for sheet-type electrode. This electrode employs conventional slurry coating methods without adding any sulfide electrolyte. The effect of LiAlO2 coating on the electrochemical performance and morphology evolution of Si electrode is investigated. Since the high mechanical strength and ionic conductivity of LiAlO2 layer can sufficiently relieve the huge expansion of Si and promote the Li+ diffusion, the electrochemical performance is significantly enhanced. The Si@LiAlO2 electrodes deliver high coulombic efficiency exceeding 80% and hold considerable specific capacity of 1205 mAh g-1 (150 cycles, 0.33 C). The Si@LiAlO2 | LiNi0.83 Co0.11 Mn0.06 O2 full-cells exhibit a high reversible capacity of 147 mAh g-1 (0.28 mA cm-2 ) and a considerable capacity retention of 80.2% (62 cycles, 2.8 mA cm-2 ). This work demonstrates promising practicability and provides a new route for the scalable preparation of Si electrode sheets for ASSLBs with extended lifespan.

5.
Small ; 19(30): e2300612, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058090

RESUMEN

Anchoring single metal atom to carbon supports represents an exceptionally effective strategy to maximize the efficiency of catalysts. Recently, dual-atom catalysts (DACs) emerge as an intriguing candidate for atomic catalysts, which perform better than single-atom catalysts (SACs). However, the clarification of the polynary single-atom structures and their beneficial effects remains a daunting challenge. Here, atomically dispersed triple Zn-Co-Fe sites anchored to nitrogen-doped carbon (ZnCoFe-N-C) prepared by one-step pyrolysis of a designed metal-organic framework precursor are reported. The atomically isolated trimetallic configuration in ZnCoFe-N-C is identified by annular dark-field scanning transmission electron microscopy and spectroscopic techniques. Benefiting from the synergistic effect of trimetallic single atoms, nitrogen, and carbon, ZnCoFe-N-C exhibits excellent catalytic performance in bifunctional oxygen reduction/evolution reactions in an alkaline medium, outperforming other SACs and DACs. The ZnCoFe-N-C-based Zn-air battery exhibits a high specific capacity (liquid state: 931.8 Wh kgZn -1 ), power density (liquid state: 137.8 mW cm-2 ; all-solid-state: 107.9 mW cm-2 ), and good cycling stability. Furthermore, density-functional theory calculations rationalize the excellent performance by demonstrating that the ZnCoFe-N-C catalyst has upshifted d-band center that enhances the adsorption of the reaction intermediates.

6.
Small ; : e2307260, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054761

RESUMEN

All-solid lithium (Li) metal batteries (ASSLBs) with sulfide-based solid electrolyte (SEs) films exhibit excellent electrochemical performance, rendering them capable of satisfying the growing demand for energy storage systems. However, challenges persist in the application of SEs film owing to their reactivity with Li metal and uncontrolled formation of lithium dendrites. In this study, iodine-doped poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) as an interlayer (PHI) to establish a stable interphase between Li metal and Li6 PS5 Cl (LPSCl) films is investigated. The release of I ions and PVDF-HFP produces LiI and LiF, effectively suppressing lithium dendrite growth. Density functional theory calculations show that the synthesized interlayer layer exhibits high interfacial energy. Results show that the PHI@Li/LPSCl film/PHI@Li symmetrical cells can cycle for more than 650 h at 0.1 mA cm-2 . The PHI@Li/LPSCl film/NCM622 cell exhibits a distinct enhancement in capacity retention of ≈26% when using LiNi0.6 Mn0.2 Co0.2 O2 (NCM622) as the cathode, compared to pristine Li metal as the anode. This study presents a feasible method for producing next-generation dendrite-free SEs films, promoting their practical use in ASSLBs.

7.
Small ; 19(25): e2300759, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36919820

RESUMEN

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

8.
Small ; 19(37): e2302644, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144432

RESUMEN

Silicon oxide (SiOx ), inheriting the high-capacity characteristic of silicon-based materials but possessing superior cycling stability, is a promising anode material for next-generation Li-ion batteries. SiOx is typically applied in combination with graphite (Gr), but the limited cycling durability of the SiOx /Gr composites curtails large-scale applications. In this work, this limited durability is demonstrated in part related to the presence of a bidirectional diffusion at the SiOx /Gr interface, which is driven by their intrinsic working potential differences and the concentration gradients. When Li on the Li-rich surface of SiOx is captured by Gr, the SiOx surface shrinks, hindering further lithiation. The use of soft carbon (SC) instead of Gr can prevent such instability is further demonstrated. The higher working potential of SC avoids bidirectional diffusion and surface compression thus allowing further lithiation. In this scenario, the evolution of the Li concentration gradient in SiOx conforms to its spontaneous lithiation process, benefiting the electrochemical performance. These results highlight the focus on the working potential of carbon as a strategy for rational optimization of SiOx /C composites toward improved battery performance.

9.
Small ; 18(39): e2203459, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36026577

RESUMEN

Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.

10.
J Environ Manage ; 299: 113624, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467867

RESUMEN

Phytoremediation is one of the effective, economic and green approaches to cope with the increasing worldwide heavy metal (HM) pollution. Here, we evaluate the effects of functional carbon nanodots (FCNs) against the hyperaccumulation capacity as well as the physiological and genetic responses of water hyacinth under Pb2+ or/and Cd2+ stress. The bioaccumulation efficiency, HM content and transfer factor, biomass, root development, chlorophyll content, antioxidant system and genes expression are investigated at various concentration of HMs. Based on the excellent adsorption capacity and plant growth regulation ability, FCNs and nitrogen doped FCNs (N-FCNs) cooperate with water hyacinth to improve their HMs removal efficiencies. FCNs and N-FCNs immobilize excess HMs ions in plant, smartly regulate enzymatic levels to mitigate oxidative damage, as well as regulate the microelement uptake and related gene expression, thus improve plant tolerance against HMs stress. Although Pb and Cd have antagonistic effects on bioaccumulation of water hyacinth to the single metal, FCNs and N-FCNs can cooperate with water hyacinth to raise the removal efficiency of HMs in water, and enhance plant tolerance under Pb-Cd combined stress. The promotion effects of FCNs and N-FCNs on phytoremediation are more effective than conventional carbon nanomaterials, including carbon nanotubes and graphene oxides. These findings demonstrate that the application of FCNs or N-FCNs can improve the phytoremediation efficiency in the restoration of HMs contaminated water area. This study provides important insights into the possibility of using FCNs-based nanomaterials and water hyacinth as synergistic system for remediation of Cd-Pb contaminated water area.


Asunto(s)
Eichhornia , Metales Pesados , Nanotubos de Carbono , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/toxicidad , Plomo , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
11.
Small ; 16(45): e2005023, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079488

RESUMEN

Conversion-alloying type anode materials like metal sulfides draw great attention due to their considerable theoretical capacity for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). However, poor conductivity, severe volume change, and harmful aggregation of the material during charge/discharge lead to unsatisfying electrochemical performance. Herein, a facile and green strategy for yolk-shell structure based on the principle of metal evaporation is proposed. SnS2 nanoparticle is encapsulated in nitrogen-doped hollow carbon nanobox (SnS2 @C). The carbon nanoboxes accommodate the volume change and aggregation of SnS2 during cycling, and form 3D continuous conductive carbon matrix by close contact. The well-designed structure benefits greatly in conductivity and structural stability of the material. As expected, SnS2 @C exhibits considerable capacity, superior cycling stability, and excellent rate capability in both SIBs and PIBs. Additionally, in situ Raman technology is unprecedentedly conducted to investigate the phase evolution of polysulfides. This work provides an avenue for facilely constructing stable and high-capacity metal dichalcogenide based anodes materials with optimized structure engineering. The proposed in-depth electrochemical measurements coupled with in situ and ex situ characterizations will provide fundamental understandings for the storage mechanism of metal dichalcogenides.

12.
Ecotoxicol Environ Saf ; 206: 111220, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877887

RESUMEN

Functional carbon nanodots (FCNs) with multiple chemical groups have great impact on the growth regulation of plants. To understand the role of the chemical groups, FCNs were reduced from the raw material by pyrolysis method and hydrolysis method. The chemical structure of these materials were characterized by using TGA, TEM, FT-IR, XPS, Raman and elementary analysis. The raw and reduced FCNs were used as plants growth regulators in culture medium of Arabidopsis thaliana. Our results indicate there is a strong correlation between the physiological responses of plants and the surface chemistries (especially carboxyl group and ester group) of the nanomaterials. The quantum-sized FCNs with multiple carboxyl groups and ester groups show better aqueous dispersity and can induce various positive physiological responses in Arabidopsis thaliana seedlings compared with the FCNs decorated without carboxyl and ester as well as aggregated FCNs. The raw FCNs present higher promotion capacity in plants biomass and roots length, and the quantum-sized FCNs are easier to be absorbed by plants and generate more positive effects on plants.


Asunto(s)
Arabidopsis/efectos de los fármacos , Carbono/farmacología , Nanopartículas/química , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Biomasa , Carbono/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tamaño de la Partícula , Reguladores del Crecimiento de las Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Propiedades de Superficie
13.
Ecotoxicol Environ Saf ; 190: 110108, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891836

RESUMEN

Amphoteric nitrogen-doped carbon dots (N-CDs) that prepared environmentally friendly have rich functional groups, such as carboxyl, amino, hydroxyl, carbonyl, etc. Through electrostatic attraction and complexation between the chemical groups and metal ions, N-CDs present excellent adsorption capacity for Cd2+ in heavy polluted water with the saturated adsorption weight of 559  mg g-1. The investigation of interaction between N-CDs, Cd2+ and Arabidopsis thaliana reveals that N-CDs (from 4  mg kg-1 to 8  mg kg-1) can dramatically enhance Cd bioaccumulation of plants by 58.3% of unit biomass and 260% of individual seedling when the plants were cultivated for 10 days under Cd stress (from 10 mg kg-1 to 50 mg kg-1). Simultaneously, N-CDs significantly alleviate the toxicity caused by high Cd stress on Arabidopsis thaliana seedlings growth. N-CDs induce higher germination rate (maximum: 2.5-fold), higher biomass (maximum: 3.7-fold), better root development (maximum: 1.4-fold), higher photosynthetic efficiency and higher antioxidant capacity in plants under Cd stress. When the Cd and N-CDs concentration are respective 20 mg kg-1 and 4 mg kg-1, the enzyme activities of the catalase and peroxidase increased to 2.73-fold and 1.45-fold, respectively. This research prove the potential application of amphoteric N-CDs in phytoremediation because N-CDs greatly mitigate the growth retardation of plant caused by Cd2+ even with the extremely increased Cd2+ concentration in vivo.


Asunto(s)
Arabidopsis/fisiología , Cadmio/toxicidad , Nitrógeno , Adsorción , Antioxidantes , Bioacumulación , Biodegradación Ambiental , Biomasa , Cadmio/metabolismo , Carbono , Tolerancia a Medicamentos , Plantones
14.
Anal Bioanal Chem ; 411(9): 1863-1871, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30552490

RESUMEN

In this study, carbon nanodots (CNDs) with excellent aqueous dispersibility, narrow size distribution, and oxygen-rich functional groups have been prepared via a green electrochemical method. Graphite electrodes were directly electrolyzed at ambient temperatures to form uniform CNDs in deionized water, which is free from additional oxidant/reductant. As-synthesized CNDs have been applied to coat an attenuated total reflection (ATR) waveguide enabling surface-enhanced infrared absorption (SEIRA) spectroscopic studies for detecting a variety of analytes in aqueous phase with remarkably enhanced IR band intensities. Finally, the proposed ATR-SEIRA strategy enabled quantitatively analyzing adenine in aqueous solution after optimizing the amount of CNDs, the solution pH, and potential CND aggregation. Graphical abstract.


Asunto(s)
Carbono/química , Nanopartículas/química , Espectrofotometría Infrarroja/métodos , Microscopía Electrónica de Transmisión , Soluciones , Propiedades de Superficie , Agua
15.
J Nanosci Nanotechnol ; 19(8): 4535-4542, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913745

RESUMEN

The application of graphene oxide in water treatment is facing a rigorous challenge of how to separate nanoadsorbents from aqueous solution using conventional methods after adsorption. Herein, a new type of easily separated composite was fabricated using cellulose acetate (CA) crosslinked with graphene oxide (CAGO) and a simple vacuum freeze-drying method. The CAGO composites were subject to SEM, FTIR, TGA, and BET characterizations. The adsorption performance of the adsorbent for the removal of methylene blue (MB) was evaluated through investigating the experimental parameters such as initial dye concentration, temperature, adsorbent dose, contact time, and solution pH. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of methylene blue onto the CAGO-4 composite was 374.53 mg/g at 323 K. The kinetic data showed a good determination with pseudo-second-order equation. Thermodynamic analysis indicated that the adsorption was an endothermic and spontaneous process.

16.
Small ; 12(33): 4486-91, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27400777

RESUMEN

In situ quantitative tensile tests of individual carbon nanotube (CNT)/SiC core-shell nanofibers are carried out in both a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The incorporation of CNTs into a SiC matrix led to improved elastic modulus and fracture strength of the CNT/SiC nanofibers as compared to SiC alone.

17.
Nano Lett ; 13(5): 1890-7, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23537351

RESUMEN

Controlling the Dirac point of graphene is essential for complementary circuits. Here, we describe the use of 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (o-MeO-DMBI) as a strong n-type dopant for chemical-vapor-deposition (CVD) grown graphene. The Dirac point of graphene can be tuned significantly by spin-coating o-MeO-DMBI solutions on the graphene sheets at different concentrations. The transport of graphene can be changed from p-type to ambipolar and finally n-type. The electron transfer between o-MeO-DMBI and graphene was additionally confirmed by Raman imaging and photoemission spectroscopy (PES) measurements. Finally, we fabricated a complementary inverter via inkjet printing patterning of o-MeO-DMBI solutions on graphene to demonstrate the potential of o-MeO-DMBI n-type doping on graphene for future applications in electrical devices.


Asunto(s)
Bencimidazoles/química , Grafito/química , Estructura Molecular , Soluciones , Volatilización
18.
J Colloid Interface Sci ; 670: 719-728, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788439

RESUMEN

Nonaqueous Li - O2 battery (LOB) is considered one of the most promising energy storage system due to its ultrahigh theoretical specific capacity (3500 Wh kg-1). Introducing vacancies in CoMn2O4 catalysts is regarded as an effective strategy to enhance the electrochemical performances of LOB. However, the relation between vacancy types in CoMn2O4 and catalytic performances in the LOB remains ambiguous. Herein, ordered porous CoMn2O4 with oxygen and metal vacancies is obtained via solvothermal reaction followed by temperature-controlled calcination using polystyrene spheres as templates. The increase in treatment temperature reduces the content of oxygen vacancies while increasing that of the metal vacancies. Notably, experimental results and theoretical calculations show that oxygen vacancies in CoMn2O4 have a greater influence than metal vacancies in modulating the LiO2 adsorption during the reaction processes and reducing the overpotential. CoMn2O4 synthesized at 500 ℃ (CoMnO-500) with higher oxygen vacancies exhibits stronger adsorption onto the LiO2, facilitating the formation of film-like Li2O2. Therefore, an LOB with the CoMnO-500 catalyst presents the lowest overpotential of 1.2 V and longest cycle lifespan of 286 cycles at a current density of 200 mA g-1. This study offers insights into the effect of CoMn2O4 vacancies on the formation pathway of Li2O2 discharge products.

19.
Adv Sci (Weinh) ; 11(23): e2310136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639396

RESUMEN

Dramatic growth of lithium dendrite, structural deterioration of LiCoO2 (LCO) cathode at high voltages, and unstable electrode/electrolyte interfaces pose significant obstacles to the practical application of high-energy-density LCO||Li batteries. In this work, a novel eutectogel electrolyte is developed by confining the nonflammable eutectic electrolyte in a polymer matrix. The eutectogel electrolyte can construct a robust solid electrolyte interphase (SEI) with inorganic-rich LiF and Li3N, contributing to a uniform Li deposition. Besides, the severe interface side reactions between LCO cathode and electrolyte can be retarded with an in situ formed protective layer. Correspondingly, Li||Li symmetrical cells achieve highly reversible Li plating/stripping over 1000 h. The LCO||Li full cell can maintain 72.5% capacity after 1500 cycles with a decay rate of only 0.018% per cycle at a high charging voltage of 4.45 V. Moreover, the well-designed eutectogel electrolyte can even enable the stable operation of LCO at an extremely high cutoff voltage of 4.6 V. This work introduces a promising avenue for the advancement of eutectogel electrolytes, the nonflammable nature and well-regulated interphase significantly push forward the future application of lithium metal batteries and high-voltage utilization of LCO cathode.

20.
Adv Mater ; 36(1): e2305128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37555532

RESUMEN

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2 Te3 ), coated with polypyrrole (PPy) is proposed. Taking advantage of the PPy coating, the Bi2 Te3 @PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2 Te3 @PPy cathodes exhibit high capacities and ultra-long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition, here the reaction mechanism is analyzed using in situ X-ray diffraction, X-ray photoelectron spectroscopy, and computational tools and it is demonstrated that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIB cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA