Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 559(7715): 556-563, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046074

RESUMEN

The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery.

2.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38446007

RESUMEN

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

3.
J Am Chem Soc ; 142(52): 21799-21809, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33321041

RESUMEN

In the search for high energy density cathodes for next-generation lithium-ion batteries, the disordered rocksalt oxyfluorides are receiving significant attention due to their high capacity and lower voltage hysteresis compared with ordered Li-rich layered compounds. However, a deep understanding of these phenomena and their redox chemistry remains incomplete. Using the archetypal oxyfluoride, Li2MnO2F, we show that the oxygen redox process in such materials involves the formation of molecular O2 trapped in the bulk structure of the charged cathode, which is reduced on discharge. The molecular O2 is trapped rigidly within vacancy clusters and exhibits minimal mobility unlike free gaseous O2, making it more characteristic of a solid-like environment. The Mn redox process occurs between octahedral Mn3+ and Mn4+ with no evidence of tetrahedral Mn5+ or Mn7+. We furthermore derive the relationship between local coordination environment and redox potential; this gives rise to the observed overlap in Mn and O redox couples and reveals that the onset potential of oxide ion oxidation is determined by the degree of ionicity around oxygen, which extends models based on linear Li-O-Li configurations. This study advances our fundamental understanding of redox mechanisms in disordered rocksalt oxyfluorides, highlighting their promise as high capacity cathodes.

4.
J Am Chem Soc ; 142(46): 19588-19601, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33108185

RESUMEN

For magnesium ion batteries (MIBs) to be used commercially, new cathodes must be developed that show stable reversible Mg intercalation. VS4 is one such promising material, with vanadium and disulfide anions [S2]2- forming one-dimensional linear chains, with a large interchain spacing (5.83 Å) enabling reversible Mg insertion. However, little is known about the details of the redox processes and structural transformations that occur upon Mg intercalation and deintercalation. Here, employing a suite of local structure characterization methods including X-ray photoelectron spectroscopy (XPS), V and S X-ray absorption near-edge spectroscopy (XANES), and 51V Hahn echo and magic-angle turning with phase-adjusted sideband separation (MATPASS) NMR, we show that the reaction proceeds via internal electron transfer from V4+ to [S2]2-, resulting in the simultaneous and coupled oxidation of V4+ to V5+ and reduction of [S2]2- to S2-. We report the formation of a previously unknown intermediate in the Mg-V-S compositional space, Mg3V2S8, comprising [VS4]3- tetrahedral units, identified by using density functional theory coupled with an evolutionary structure-predicting algorithm. The structure is verified experimentally via X-ray pair distribution function analysis. The voltage associated with the competing conversion reaction to form MgS plus V metal directly is similar to that of intermediate formation, resulting in two competing reaction pathways. Partial reversibility is seen to re-form the V5+ and S2- containing intermediate on charging instead of VS4. This work showcases the possibility of developing a family of transition metal polychalcogenides functioning via coupled cationic-anionic redox processes as a potential way of achieving higher capacities for MIBs.

5.
Phys Chem Chem Phys ; 22(34): 18976-18988, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32648863

RESUMEN

The chemical and structural nature of potassium compounds involved in catalytic soot oxidation have been studied by a combination of temperature programmed oxidation and operando potassium K-edge X-ray absorption spectroscopy experiments. These experiments are the first known operando studies using tender X-rays (∼3.6 keV) under high temperature oxidation reaction conditions. X-ray absorption near edge structure analysis of K2CO3/Al2O3 catalysts during heating shows that, at temperatures between 100 and 200 °C, potassium species undergo a structural change from an initial hydrated K2CO3·xH2O and KHCO3 mixture to well-defined K2CO3. As the catalyst is heated from 200 °C to 600 °C, a feature associated with multiple scattering shifts to lower energy, indicating increased K2CO3 dispersion, due to its mobility at high reaction temperature. This shift was noted to be greater in samples containing soot than in control experiments without soot and can be attributed to enhanced mobility of the K2CO3, due to the interaction between soot and potassium species. No potassium species except K2CO3 could be defined during reactions, which excludes a potential reaction mechanism in which carbonate ions are the active soot-oxidising species. Simulations of K-edge absorption near edge structures were performed to rationalise the observed changes seen. Findings showed that cluster size, unit cell distortions and variation in the distribution of potassium crystallographic sites influenced the simulated spectra of K2CO3. While further simulation studies are required for a more complete understanding, the current results support the hypothesis that changes in the local structure on dispersion can influence the observed spectra. Ex situ characterisation was carried out on the fresh and used catalyst, by X-ray diffraction and X-ray photoelectron spectroscopy, which indicated changes to the carbonate species, in line with the X-ray absorption spectroscopy experiments.

6.
J Synchrotron Radiat ; 26(Pt 1): 253-262, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30655493

RESUMEN

Systematic studies of the performance of a water-cooled X-ray monochromator, designed and built for the B16 Test beamline at the Diamond Light Source, UK, are presented. A technical description of the monochromator is given and the results of commissioning measurements are discussed. Overall, the monochromator satisfies the original specifications well and meets all the major requirements of the versatile beamline. Following its successful implementation on B16, the basic monochromator design has been reproduced and adapted on other Diamond Light Source beamlines, including B18 and B21.

7.
Small ; 14(10)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29359400

RESUMEN

Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.

8.
J Synchrotron Radiat ; 25(Pt 4): 953-959, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979155

RESUMEN

Although remote access to beamline synchrotron facilities is now a common operation mode at macromolecular crystallography beamlines thanks to substantial efforts in automated processes for sample preparation and handling, experiment planning and analysis, this is still not the case for XAFS beamlines. Here the experience and developments undertaken at LNLS and Diamond in automation are described, in an attempt to tackle the specific challenges posed by the high variability in experimental conditions and configurations that XAFS measurements require.

9.
J Synchrotron Radiat ; 25(Pt 4): 998-1009, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979161

RESUMEN

This manuscript presents the current status and technical details of the Spectroscopy Village at Diamond Light Source. The Village is formed of four beamlines: I18, B18, I20-Scanning and I20-EDE. The village provides the UK community with local access to a hard X-ray microprobe, a quick-scanning multi-purpose XAS beamline, a high-intensity beamline for X-ray absorption spectroscopy of dilute samples and X-ray emission spectroscopy, and an energy-dispersive extended X-ray absorption fine-structure beamline. The optics of B18, I20-scanning and I20-EDE are detailed; moreover, recent developments on the four beamlines, including new detector hardware and changes in acquisition software, are described.

10.
Phys Chem Chem Phys ; 20(30): 20088-20095, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30024004

RESUMEN

Inspired by reports of redox active interphases in all-solid-state batteries employing fast conducting lithium thiophosphate solid-state electrolytes, we investigated the compositional depolymerization of interconnected PS4 tetrahedra in (Li2S)x(P2S5)100-x glasses (50 < x < 80) by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Based on the observed energy shifts with composition, we present a structural model of the three different bonding types describing the structures of either crystalline or amorphous thiophosphates. This model and reference data characterizes amorphous thiophosphates based on their inter-tetrahedral connectivity and helps to distinguish malign decomposition reactions from reversible redox reactions at the cathode active material/solid-state electrolyte interface. This work highlights the importance of a combined analytical approach and appropriate reference compounds to elucidate the interface reactions in all-solid-state battery systems.

11.
Angew Chem Int Ed Engl ; 57(25): 7390-7395, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29517157

RESUMEN

Post-excavation iron corrosion may be accelerated by the presence of Cl- , leading to conservation methods designed to remove Cl. This study exploits a unique opportunity to assess 35 years of conservation applied to cast-iron cannon shot excavated from the Mary Rose. A combination of synchrotron X-ray powder diffraction (SXPD), absorption spectroscopy (XAS), and fluorescence (XRF) mapping have been used to characterise the impact of conservation on the crystalline corrosion products, chlorine distribution, and speciation. The chlorinated phase akaganeite, ß-FeO(OH,Cl), was found on shot washed in corrosion inhibitor Hostacor IT with or without an additional reduction stage. No chlorinated phases were observed on the surface of shot stored in sodium sesquicarbonate (Na2 CO3 /NaHCO3 ); however, hibbingite, ß-Fe2 (OH)3 Cl, was present in metal pores. It is proposed that surface ß-FeO(OH,Cl) formed in the early stages of active conservation owing to oxidation of ß-Fe2 (OH)3 Cl at near-neutral pH.

12.
J Am Chem Soc ; 139(16): 5842-5848, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28362104

RESUMEN

Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF2, by ball milling it with BaF2, to create nanostructured Ba1-xCaxF2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba1-xCaxF2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly, collective transport in glassy materials is well documented [for example, J. Chem. Phys. 2013 , 138 , 12A538 ]. Possible crystallographic nomenclatures, to be used to describe long-range order in disordered systems, may include, for example, the shape, length, and branching of the "snake" arrays. Such characterizations may ultimately provide insight and differences between long-range order in disordered, amorphous, or liquid states and processes such as ionic conductivity, melting, and crystallization.

13.
Angew Chem Int Ed Engl ; 56(32): 9351-9355, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28623870

RESUMEN

Three recurring hypotheses are often used to explain the effect of non-thermal plasmas (NTPs) on NTP catalytic hybrid reactions; namely, modification or heating of the catalyst or creation of new reaction pathways by plasma-produced species. NTP-assisted methane (CH4 ) oxidation over Pd/Al2 O3 was investigated by direct monitoring of the X-ray absorption fine structure of the catalyst, coupled with end-of-pipe mass spectrometry. This in situ study revealed that the catalyst did not undergo any significant structural changes under NTP conditions. However, the NTP did lead to an increase in the temperature of the Pd nanoparticles; although this temperature rise was insufficient to activate the thermal CH4 oxidation reaction. The contribution of a lower activation barrier alternative reaction pathway involving the formation of CH3 (g) from electron impact reactions is proposed.

14.
J Synchrotron Radiat ; 22(1): 105-12, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25537595

RESUMEN

The structure of small (2-5 nm) Ge quantum dots prepared by the colloidal synthesis route is examined. Samples were synthesized using either GeO2 or GeCl4 as precursor. As-prepared samples were further annealed under Ar or H2/Ar atmosphere at different temperatures in order to understand the effect of annealing on their structure. It was found that as-prepared samples possess distinctly different structures depending on their synthesis route as indicated by their long-range ordering. An appreciable amount of oxygen was found to be bound to Ge in samples prepared with GeO2 as a precursor; however, not for GeCl4. Based on combined transmission electron microscope, Raman, X-ray diffraction and X-ray absorption measurements, it is suggested that as-prepared samples are best described by the core-shell model with a small nano-crystalline core and an amorphous outer layer terminated either with oxygen or hydrogen depending on the synthesis route. Annealing in an H2Ar atmosphere leads to sample crystallization and further nanoparticle growth, while at the same time reducing the Ge-O bonding. X-ray diffraction measurements for as-prepared and annealed samples indicate that diamond-type and metastable phases are present.

15.
Phys Chem Chem Phys ; 17(7): 5155-71, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25601325

RESUMEN

The interaction of the widely used anticancer drug cisplatin with DNA bases was studied by EXAFS and vibrational spectroscopy (FTIR, Raman and INS), coupled with DFT/plane-wave calculations. Detailed information was obtained on the local atomic structure around the Pt(ii) centre, both in the cisplatin-purine (adenine and guanine) and cisplatin-glutathione adducts. Simultaneous neutron and Raman scattering experiments allowed us to obtain a reliable and definite picture of this cisplatin interplay with its main pharmacological target (DNA), at the molecular level. The vibrational experimental spectra were fully assigned in the light of the calculated pattern for the most favoured geometry of each drug-purine adduct, and cisplatin's preference for guanine (G) relative to adenine (A) within the DNA double helix was experimentally verified: a complete N by S substitution in the metal coordination sphere was only observed for [cDDP-A2], reflecting a somewhat weaker Pt-A binding relative to Pt-G. The role of glutathione on the drug's pharmacokinetics, as well as on the stability of platinated DNA adducts, was evaluated as this is the basis for glutathione-mediated intracellular drug scavenging and in vivo resistance to Pt-based anticancer drugs. Spectroscopic evidence of the metal's preference for glutathione's sulfur over purine's nitrogen binding sites was gathered, at least two sulfur atoms being detected in platinum's first coordination sphere.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Aductos de ADN/química , Glutatión/química , Adenina/química , Antineoplásicos/química , Cisplatino/química , Guanina/química , Modelos Moleculares , Conformación de Ácido Nucleico/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
16.
J Am Chem Soc ; 135(5): 1838-44, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23327235

RESUMEN

Low-temperature topochemical reduction of the cation disordered perovskite phase SrFe(0.5)Ru(0.5)O(3) with CaH(2) yields the infinite layer phase SrFe(0.5)Ru(0.5)O(2). Thermogravimetric and X-ray absorption data confirm the transition metal oxidation states as SrFe(0.5)(2+)Ru(0.5)(2+)O(2); thus, the title phase is the first reported observation of Ru(2+) centers in an extended oxide phase. DFT calculations reveal that, while the square-planar Fe(2+) centers adopt a high-spin S = 2 electronic configuration, the square-planar Ru(2+) cations have an intermediate S = 1 configuration. This combination of S = 2, Fe(2+) and S = 1, Ru(2+) is consistent with the observed spin-glass magnetic behavior of SrFe(0.5)Ru(0.5)O(2).

17.
Inorg Chem ; 52(19): 10920-8, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24041273

RESUMEN

Reaction of the Ruddlesden-Popper phases Sr2Fe(0.5)Ru(0.5)O4 and Sr3(Fe(0.5)Ru(0.5))2O7 with CaH2 results in the topochemical deintercalation of oxide ions from these materials and the formation of samples with average compositions of Sr2Fe(0.5)Ru(0.5)O(3.35) and Sr3(Fe(0.5)Ru(0.5))2O(5.68), respectively. Diffraction data reveal that both the n = 1 and n = 2 samples consist of two-phase mixtures of reduced phases with subtly different oxygen contents. The separation of samples into two phases upon reduction is discussed on the basis of a short-range inhomogeneous distribution of iron and ruthenium in the starting materials. X-ray absorption data and Mössbauer spectra reveal the reduced samples contain an Fe(3+) and Ru(2+/3+) oxidation state combination, which is unexpected considering the Fe(3+)/Fe(2+) and Ru(3+)/Ru(2+) redox potentials, suggesting that the local coordination geometry of the transition metal sites helps to stabilize the Ru(2+) centers. Fitted Mössbauer spectra of both the n = 1 and n = 2 samples are consistent with the presence of Fe(3+) cations in square planar coordination sites. Magnetization data of both materials are consistent with spin glass-like behavior.

18.
Nat Commun ; 14(1): 2917, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217479

RESUMEN

Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.

19.
Ind Eng Chem Res ; 62(40): 16198-16206, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37841415

RESUMEN

Process analytical technologies are widely used to inform process control by identifying relationships between reagents and products. Here, we present a novel process analytical technology system for operando XAS on multiphase multicomponent synthesis processes based on the combination of a conventional lab-scale agitated reactor with a liquid-jet cell. The preparation of sulfonate-stabilized CaCO3 particles from polyphasic Ca(OH)2 dispersions was monitored in real time by Ca K-edge XAS to identify changes in Ca speciation in the bulk solution/dispersion as a function of time and process conditions. Linear combination fitting of the spectra quantitatively resolved composition changes from the initial conversion of Ca(OH)2 to the Ca(R-SO3)2 surfactant to the ultimate formation of nCaCO3·mCa(R- SO3)2 particles. The system provides a novel tool with strong chemical specificity for probing multiphase synthesis processes at a molecular level, providing an avenue to establishing the relationships between critical quality attributes of a process and the quality and performance of the product.

20.
Nanoscale ; 14(7): 2696-2710, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35107463

RESUMEN

Various electrode materials are considered for sodium-ion batteries (SIBs) and one important prerequisite for developments of SIBs is a detailed understanding about charge storage mechanisms. Herein, we present a rigorous study about Na storage properties of ultra-small Fe3S4 nanoparticles, synthesized applying a solvothermal route, which exhibit a very good electrochemical performance as anode material for SIBs. A closer look into electrochemical reaction pathways on the nanoscale, utilizing synchrotron-based X-ray diffraction and X-ray absorption techniques, reveals a complicated conversion mechanism. Initially, separation of Fe3S4 into nanocrystalline intermediates occurs accompanied by reduction of Fe3+ to Fe2+ cations. Discharge to 0.1 V leads to formation of strongly disordered Fe0 finely dispersed in a nanosized Na2S matrix. The resulting volume expansion leads to a worse long-term stability in the voltage range 3.0-0.1 V. Adjusting the lower cut-off potential to 0.5 V, crystallization of Na2S is prevented and a completely amorphous intermediate stage is formed. Thus, the smaller voltage window is favorable for long-term stability, yielding highly reversible capacity retention, e.g., 486 mAh g-1 after 300 cycles applying 0.5 A g-1 and superior coulombic efficiencies >99.9%. During charge to 3.0 V, Fe3S4 with smaller domains are reversibly generated in the 1st cycle, but further cycling results in loss of structural long-range order, whereas the local environment resembles that of Fe3S4 in subsequent charged states. Electrokinetic analyses reveal high capacitive contributions to the charge storage, indicating shortened diffusion lengths and thus, redox reactions occur predominantly at surfaces of nanosized conversion products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA