Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Radiology ; 307(3): e222239, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943075

RESUMEN

Background Scar burden with late gadolinium enhancement (LGE) cardiac MRI (CMR) predicts arrhythmic events in patients with postinfarction in single-center studies. However, LGE analysis requires experienced human observers, is time consuming, and introduces variability. Purpose To test whether postinfarct scar with LGE CMR can be quantified fully automatically by machines and to compare the ability of LGE CMR scar analyzed by humans and machines to predict arrhythmic events. Materials and Methods This study is a retrospective analysis of the multicenter, multivendor CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy (DERIVATE) registry. Patients with chronic heart failure, echocardiographic left ventricular ejection fraction (LVEF) of less than 50%, and LGE CMR were recruited (from January 2015 through December 2020). In the current study, only patients with ischemic cardiomyopathy were included. Quantification of total, dense, and nondense scars was carried out by two experienced readers or a Ternaus network, trained and tested with LGE images of 515 and 246 patients, respectively. Univariable and multivariable Cox analyses were used to assess patient and cardiac characteristics associated with a major adverse cardiac event (MACE). Area under the receiver operating characteristic curve (AUC) was used to compare model performances. Results In 761 patients (mean age, 65 years ± 11, 671 men), 83 MACEs occurred. With use of the testing group, univariable Cox-analysis found New York Heart Association class, left ventricle volume and/or function parameters (by echocardiography or CMR), guideline criterion (LVEF of ≤35% and New York Heart Association class II or III), and LGE scar analyzed by humans or the machine-learning algorithm as predictors of MACE. Machine-based dense or total scar conferred incremental value over the guideline criterion for the association with MACE (AUC: 0.68 vs 0.63, P = .02 and AUC: 0.67 vs 0.63, P = .01, respectively). Modeling with competing risks yielded for dense and total scar (AUC: 0.67 vs 0.61, P = .01 and AUC: 0.66 vs 0.61, P = .005, respectively). Conclusion In this analysis of the multicenter CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy (DERIVATE) registry, fully automatic machine learning-based late gadolinium enhancement analysis reliably quantifies myocardial scar mass and improves the current prediction model that uses guideline-based risk criteria for implantable cardioverter defibrillator implantation. ClinicalTrials.gov registration no.: NCT03352648 Published under a CC BY 4.0 license. Supplemental material is available for this article.


Asunto(s)
Cicatriz , Medios de Contraste , Masculino , Humanos , Anciano , Volumen Sistólico , Estudios Retrospectivos , Imagen por Resonancia Cinemagnética/métodos , Gadolinio , Función Ventricular Izquierda , Imagen por Resonancia Magnética/métodos , Sistema de Registros , Inteligencia Artificial , Valor Predictivo de las Pruebas
2.
Eur Heart J Cardiovasc Imaging ; 24(4): 472-482, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792682

RESUMEN

AIMS: Right ventricular systolic dysfunction (RVSD) is an important determinant of outcomes in heart failure (HF) cohorts. While the quantitative assessment of RV function is challenging using 2D-echocardiography, cardiac magnetic resonance (CMR) is the gold standard with its high spatial resolution and precise anatomical definition. We sought to investigate the prognostic value of CMR-derived RV systolic function in a large cohort of HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: Study cohort comprised of patients enrolled in the CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DefibrillAtor ThErapy registry who had HFrEF and had simultaneous baseline CMR and echocardiography (n = 2449). RVSD was defined as RV ejection fraction (RVEF) <45%. Kaplan-Meier curves and cox regression were used to investigate the association between RVSD and all-cause mortality (ACM). Mean age was 59.8 ± 14.0 years, 42.0% were female, and mean left ventricular ejection fraction (LVEF) was 34.0 ± 10.8. Median follow-up was 959 days (interquartile range: 560-1590). RVSD was present in 936 (38.2%) and was an independent predictor of ACM (adjusted hazard ratio = 1.44; 95% CI [1.09-1.91]; P = 0.01). On subgroup analyses, the prognostic value of RVSD was more pronounced in NYHA I/II than in NYHA III/IV, in LVEF <35% than in LVEF ≥35%, and in patients with renal dysfunction when compared to those with normal renal function. CONCLUSION: RV systolic dysfunction is an independent predictor of ACM in HFrEF, with a more pronounced prognostic value in select subgroups, likely reflecting the importance of RVSD in the early stages of HF progression.


Asunto(s)
Cardiomiopatías , Desfibriladores Implantables , Insuficiencia Cardíaca , Disfunción Ventricular Derecha , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/complicaciones , Desfibriladores Implantables/efectos adversos , Factores de Riesgo , Imagen por Resonancia Cinemagnética/métodos , Cardiomiopatías/complicaciones , Espectroscopía de Resonancia Magnética/efectos adversos , Función Ventricular Derecha , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/terapia , Disfunción Ventricular Derecha/etiología
3.
JACC Cardiovasc Imaging ; 16(11): 1387-1400, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37227329

RESUMEN

BACKGROUND: Implantable cardioverter-defibrillator (ICD) therapy is the most effective prophylactic strategy against sudden cardiac death (SCD) in patients with ischemic cardiomyopathy (ICM) and left ventricle ejection fraction (LVEF) ≤35% as detected by transthoracic echocardiograpgy (TTE). This approach has been recently questioned because of the low rate of ICD interventions in patients who received implantation and the not-negligible percentage of patients who experienced SCD despite not fulfilling criteria for implantation. OBJECTIVES: The DERIVATE-ICM registry (CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy; NCT03352648) is an international, multicenter, and multivendor study to assess the net reclassification improvement (NRI) for the indication of ICD implantation by the use of cardiac magnetic resonance (CMR) as compared to TTE in patients with ICM. METHODS: A total of 861 patients with ICM (mean age 65 ± 11 years, 86% male) with chronic heart failure and TTE-LVEF <50% participated. Major adverse arrhythmic cardiac events (MAACE) were the primary endpoints. RESULTS: During a median follow-up of 1,054 days, MAACE occurred in 88 (10.2%). Left ventricular end-diastolic volume index (HR: 1.007 [95% CI: 1.000-1.011]; P = 0.05), CMR-LVEF (HR: 0.972 [95% CI: 0.945-0.999]; P = 0.045) and late gadolinium enhancement (LGE) mass (HR: 1.010 [95% CI: 1.002-1.018]; P = 0.015) were independent predictors of MAACE. A multiparametric CMR weighted predictive derived score identifies subjects at high risk for MAACE compared with TTE-LVEF cutoff of 35% with a NRI of 31.7% (P = 0.007). CONCLUSIONS: The DERIVATE-ICM registry is a large multicenter registry showing the additional value of CMR to stratify the risk for MAACE in a large cohort of patients with ICM compared with standard of care.


Asunto(s)
Cardiomiopatías , Desfibriladores Implantables , Isquemia Miocárdica , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Desfibriladores Implantables/efectos adversos , Medios de Contraste , Imagen por Resonancia Cinemagnética , Valor Predictivo de las Pruebas , Gadolinio , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/terapia , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/terapia , Cardiomiopatías/complicaciones , Espectroscopía de Resonancia Magnética/efectos adversos , Sistema de Registros , Factores de Riesgo
4.
Atherosclerosis ; 294: 25-32, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31945615

RESUMEN

BACKGROUND AND AIMS: Artificial intelligence (AI) is increasing its role in diagnosis of patients with suspicious coronary artery disease. The aim of this manuscript is to develop a deep convolutional neural network (CNN) to classify coronary computed tomography angiography (CCTA) in the correct Coronary Artery Disease Reporting and Data System (CAD-RADS) category. METHODS: Two hundred eighty eight patients who underwent clinically indicated CCTA were included in this single-center retrospective study. The CCTAs were stratified by CAD-RADS scores by expert readers and considered as reference standard. A deep CNN was designed and tested on the CCTA dataset and compared to on-site reading. The deep CNN analyzed the diagnostic accuracy of the following three Models based on CAD-RADS classification: Model A (CAD-RADS 0 vs CAD-RADS 1-2 vs CAD-RADS 3,4,5), Model 1 (CAD-RADS 0 vs CAD-RADS>0), Model 2 (CAD-RADS 0-2 vs CAD-RADS 3-5). Time of analysis for both physicians and CNN were recorded. RESULTS: Model A showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 47%, 74%, 77%, 46% and 60%, respectively. Model 1 showed a sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 66%, 91%, 92%, 63%, 86%, respectively. Conversely, Model 2 demonstrated the following sensitivity, specificity, negative predictive value, positive predictive value and accuracy: 82%, 58%, 74%, 69%, 71%, respectively. Time of analysis was significantly lower using CNN as compared to on-site reading (530.5 ± 179.1 vs 104.3 ± 1.4 sec, p=0.01) CONCLUSIONS: Deep CNN yielded accurate automated classification of patients with CAD-RADS.


Asunto(s)
Algoritmos , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/clasificación , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aprendizaje Profundo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
5.
J Clin Med ; 9(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650379

RESUMEN

Stress computed tomography perfusion (Stress-CTP) and computed tomography-derived fractional flow reserve (FFRCT) are functional techniques that can be added to coronary computed tomography angiography (cCTA) to improve the management of patients with suspected coronary artery disease (CAD). This retrospective analysis from the PERFECTION study aims to assess the impact of their availability on the management of patients with suspected CAD scheduled for invasive coronary angiography (ICA) and invasive FFR. The management plan was defined as optimal medical therapy (OMT) or revascularization and was recorded for the following strategies: cCTA alone, cCTA+FFRCT, cCTA+Stress-CTP and cCTA+FFRCT+Stress-CTP. In 291 prospectively enrolled patients, cCTA+FFRCT, cCTA+Stress-CTP and cCTA+FFRCT+Stress-CTP showed a similar rate of reclassification of cCTA findings when FFRCT and Stress-CTP were added to cCTA. cCTA, cCTA+FFRCT, cCTA+Stress-CTP and cCTA+FFRCT+Stress-CTP showed a rate of agreement versus the final therapeutic decision of 63%, 71%, 89%, 84% (cCTA+Stress-CTP and cCTA+FFRCT+Stress-CTP vs cCTA and cCTA+FFRCT: p < 0.01), respectively, and a rate of agreement in terms of the vessels to be revascularized of 57%, 64%, 74%, 71% (cCTA+Stress-CTP and cCTA+FFRCT+Stress-CTP vs cCTA and cCTA+FFRCT: p < 0.01), respectively, with an effective radiation dose (ED) of 2.9 ± 1.3 mSv, 2.9 ± 1.3 mSv, 5.9 ± 2.7 mSv, and 3.1 ± 2.1 mSv. The addition of FFRCT and Stress-CTP improved therapeutic decision-making compared to cCTA alone, and a sequential strategy with cCTA+FFRCT+Stress-CTP represents the best compromise in terms of clinical impact and radiation exposure.

6.
G Ital Cardiol (Rome) ; 20(7): 417-428, 2019.
Artículo en Italiano | MEDLINE | ID: mdl-31320763

RESUMEN

The increased number of patients with coronary artery disease (CAD) is of great clinical relevance and involves a large burden of the healthcare system. The management of these patients is focused on relieving symptoms and improving clinical outcomes. Therefore, the ideal test would provide the correct diagnosis and actionable information. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but their diagnostic performance remains low with limited accuracy when compared to obstructive CAD at the time of invasive coronary angiography or invasive fractional flow reserve (FFR) assessment. For these reasons, an urgent need for non-invasive techniques that evaluate both the functional and morphological severity of CAD is growing. Coronary computed tomography angiography (CCTA) has emerged as a unique non-invasive technique providing coronary artery anatomic imaging. More recently, the evaluation of FFR with CCTA (FFRCT) has demonstrated high diagnostic performance compared to invasive FFR. Moreover, this tool has been proven to be more cost-effective than standard diagnostic pathways in large prospective multicenter trials, and to have a prognostic role. Additionally, stress myocardial computed tomography perfusion (stress CTP) represents a novel tool for the diagnosis of ischemia with high diagnostic accuracy. With advances in technical development, both static and dynamic computed tomography myocardial perfusion protocols offer functional assessment with an acceptable increase in radiation exposure. Compared to other imaging techniques, both FFRCT and stress CTP allow the combination of the anatomical evaluation of coronary arteries and the functional relevance of coronary artery lesions, having the potential to revolutionize the diagnostic paradigm of suspected CAD. FFRCT and stress CTP should be integrated in diagnostic pathways of patients with stable CAD and will likely result in a decrease of invasive diagnostic procedures and costs.


Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Estenosis Coronaria/diagnóstico por imagen , Estenosis Coronaria/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA