Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 98(1): 65-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32475607

RESUMEN

Artificial intelligence (AI) for the purpose of this review is an umbrella term for technologies emulating a nephropathologist's ability to extract information on diagnosis, prognosis, and therapy responsiveness from native or transplant kidney biopsies. Although AI can be used to analyze a wide variety of biopsy-related data, this review focuses on whole slide images traditionally used in nephropathology. AI applications in nephropathology have recently become available through several advancing technologies, including (i) widespread introduction of glass slide scanners, (ii) data servers in pathology departments worldwide, and (iii) through greatly improved computer hardware to enable AI training. In this review, we explain how AI can enhance the reproducibility of nephropathology results for certain parameters in the context of precision medicine using advanced architectures, such as convolutional neural networks, that are currently the state of the art in machine learning software for this task. Because AI applications in nephropathology are still in their infancy, we show the power and potential of AI applications mostly in the example of oncopathology. Moreover, we discuss the technological obstacles as well as the current stakeholder and regulatory concerns about developing AI applications in nephropathology from the perspective of nephropathologists and the wider nephrology community. We expect the gradual introduction of these technologies into routine diagnostics and research for selective tasks, suggesting that this technology will enhance the performance of nephropathologists rather than making them redundant.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Programas Informáticos
2.
IEEE Trans Med Imaging ; 40(10): 2869-2879, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33434126

RESUMEN

Computer-aided diagnosis (CAD) systems must constantly cope with the perpetual changes in data distribution caused by different sensing technologies, imaging protocols, and patient populations. Adapting these systems to new domains often requires significant amounts of labeled data for re-training. This process is labor-intensive and time-consuming. We propose a memory-augmented capsule network for the rapid adaptation of CAD models to new domains. It consists of a capsule network that is meant to extract feature embeddings from some high-dimensional input, and a memory-augmented task network meant to exploit its stored knowledge from the target domains. Our network is able to efficiently adapt to unseen domains using only a few annotated samples. We evaluate our method using a large-scale public lung nodule dataset (LUNA), coupled with our own collected lung nodules and incidental lung nodules datasets. When trained on the LUNA dataset, our network requires only 30 additional samples from our collected lung nodule and incidental lung nodule datasets to achieve clinically relevant performance (0.925 and 0.891 area under receiving operating characteristic curves (AUROC), respectively). This result is equivalent to using two orders of magnitude less labeled training data while achieving the same performance. We further evaluate our method by introducing heavy noise, artifacts, and adversarial attacks. Under these severe conditions, our network's AUROC remains above 0.7 while the performance of state-of-the-art approaches reduce to chance level.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Diagnóstico por Computador , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen
3.
J Neurosci Methods ; 336: 108618, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32045572

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is projected to become one of the most expensive diseases in modern history, and yet diagnostic uncertainties exist that can only be confirmed by postmortem brain examination. Machine Learning (ML) algorithms have been proposed as a feasible alternative to the diagnosis of several neurological diseases and disorders, such as AD. An ideal ML-derived diagnosis should be inexpensive and noninvasive while retaining the accuracy and versatility that make ML techniques desirable for medical applications. NEW METHODS: Two portable modalities, Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) have been widely employed in constructing hybrid classification models to compensate for each other's weaknesses. In this study, we present a hybrid EEG-fNIRS model for classifying four classes of subjects including one healthy control (HC) group, one mild cognitive impairment (MCI) group, and, two AD patient groups. A concurrent EEG-fNIRS setup was used to record data from 29 subjects during a random digit encoding-retrieval task. EEG-derived and fNIRS-derived features were sorted using a Pearson correlation coefficient-based feature selection (PCCFS) strategy and then fed into a linear discriminant analysis (LDA) classifier to evaluate their performance. RESULTS: The hybrid EEG-fNIRS feature set was able to achieve a higher accuracy (79.31 %) by integrating their complementary properties, compared to using EEG (65.52 %) or fNIRS alone (58.62 %). Moreover, our results indicate that the right prefrontal and left parietal regions are associated with the progression of AD. COMPARISON WITH EXISTING METHODS: Our hybrid and portable system provided enhanced classification performance in multi-class classification of AD population. CONCLUSIONS: These findings suggest that hybrid EEG-fNIRS systems are a promising tool that may enhance the AD diagnosis and assessment process.


Asunto(s)
Enfermedad de Alzheimer , Interfaces Cerebro-Computador , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Electroencefalografía , Humanos , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA