Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 453(7193): 387-90, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18449197

RESUMEN

Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth's magnetic field for orientation and navigation. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on magnetically sensitive free radical reactions, is gaining support despite the fact that no chemical reaction in vitro has been shown to respond to magnetic fields as weak as the Earth's ( approximately 50 muT) or to be sensitive to the direction of such a field. Here we use spectroscopic observation of a carotenoid-porphyrin-fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is changed by application of < or =50 microT magnetic fields, and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor. These experiments establish the feasibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detection of the direction of the Earth's magnetic field.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Magnetismo , Modelos Biológicos , Orientación/fisiología , Animales , Anisotropía , Planeta Tierra , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA