Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 65(3): 476-489.e4, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111013

RESUMEN

The RNA-binding protein (RBP) LIN41, also known as LIN-41 or TRIM71, is a key regulator of animal development, but its physiological targets and molecular mechanism of action are largely elusive. Here we find that this RBP has two distinct mRNA-silencing activities. Using genome-wide ribosome profiling, RNA immunoprecipitation, and in vitro-binding experiments, we identify four mRNAs, each encoding a transcription factor or cofactor, as direct physiological targets of C. elegans LIN41. LIN41 silences three of these targets through their 3' UTRs, but it achieves isoform-specific silencing of one target, lin-29A, through its unique 5' UTR. Whereas the 3' UTR targets mab-10, mab-3, and dmd-3 undergo transcript degradation, lin-29A experiences translational repression. Through binding site transplantation experiments, we demonstrate that it is the location of the LIN41-binding site that specifies the silencing mechanism. Such position-dependent dual activity may, when studied more systematically, emerge as a feature shared by other RBPs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Sitios de Unión , Interferencia de ARN , Estabilidad del ARN , ARN de Helminto/química , ARN de Helminto/metabolismo
2.
Nucleic Acids Res ; 51(19): 10668-10680, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37670562

RESUMEN

The Caenorhabditis elegans LIN-41/TRIM71 is a well-studied example of a versatile regulator of mRNA fate, which plays different biological functions involving distinct post-transcriptional mechanisms. In the soma, LIN-41 determines the timing of developmental transitions between larval stages. The somatic LIN-41 recognizes specific mRNAs via LREs (LIN-41 Recognition Elements) and elicits either mRNA decay or translational repression. In the germline, LIN-41 controls the oocyte-to-embryo transition (OET), although the relevant targets and regulatory mechanisms are poorly understood. The germline LIN-41 was suggested to regulate mRNAs indirectly by associating with another RNA-binding protein. We show here that LIN-41 can also regulate germline mRNAs via the LREs. Through a computational-experimental analysis, we identified the germline mRNAs potentially controlled via LREs and validated one target, the cfp-1 mRNA, encoding a conserved chromatin modifier. Our analysis suggests that cfp-1 may be a long-sought target whose LIN-41-mediated regulation during OET facilitates the transcriptional reprogramming underlying the switch from germ- to somatic cell identity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Nucleic Acids Res ; 50(14): 8226-8239, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819231

RESUMEN

Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.


Asunto(s)
Endorribonucleasas , Ribonucleasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo
4.
PLoS Genet ; 14(3): e1007252, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29579041

RESUMEN

Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Oocitos/fisiología , Interferencia de ARN , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Mutación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética
5.
Bioessays ; 39(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28719000

RESUMEN

The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.


Asunto(s)
Endonucleasas/metabolismo , Ribonucleasas/metabolismo , Animales , Evolución Biológica , Caenorhabditis elegans/metabolismo , Humanos , Inflamación/metabolismo , ARN/metabolismo
6.
Semin Cell Dev Biol ; 47-48: 52-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26514622

RESUMEN

TRIM-NHL proteins are key regulators of developmental transitions, for example promoting differentiation, while inhibiting cell growth and proliferation, in stem and progenitor cells. Abnormalities in these proteins have been also associated with human diseases, particularly affecting muscular and neuronal functions, making them potential targets for therapeutic intervention. The purpose of this review is to provide a systematic and comprehensive summary on the most studied TRIM-NHL proteins, highlighting examples where connections were established between structural features, molecular functions and biological outcomes.


Asunto(s)
Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad/genética , Morfogénesis/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/clasificación , Humanos , Mutación , Proteínas Nucleares/clasificación , Filogenia , Factores de Transcripción/clasificación , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/clasificación
7.
PLoS Genet ; 10(8): e1004533, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25167051

RESUMEN

The mechanisms controlling cell fate determination and reprogramming are fundamental for development. A profound reprogramming, allowing the production of pluripotent cells in early embryos, takes place during the oocyte-to-embryo transition. To understand how the oocyte reprogramming potential is controlled, we sought Caenorhabditis elegans mutants in which embryonic transcription is initiated precociously in germ cells. This screen identified LIN-41, a TRIM-NHL protein and a component of the somatic heterochronic pathway, as a temporal regulator of pluripotency in the germline. We found that LIN-41 is expressed in the cytoplasm of developing oocytes, which, in lin-41 mutants, acquire pluripotent characteristics of embryonic cells and form teratomas. To understand LIN-41 function in the germline, we conducted structure-function studies. In contrast to other TRIM-NHL proteins, we found that LIN-41 is unlikely to function as an E3 ubiquitin ligase. Similar to other TRIM-NHL proteins, the somatic function of LIN-41 is thought to involve mRNA regulation. Surprisingly, we found that mutations predicted to disrupt the association of LIN-41 with mRNA, which otherwise compromise LIN-41 function in the heterochronic pathway in the soma, have only minor effects in the germline. Similarly, LIN-41-mediated repression of a key somatic mRNA target is dispensable for the germline function. Thus, LIN-41 appears to function in the germline and the soma via different molecular mechanisms. These studies provide the first insight into the mechanism inhibiting the onset of embryonic differentiation in developing oocytes, which is required to ensure a successful transition between generations.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Desarrollo Embrionario/genética , Oocitos/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Reprogramación Celular/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Mutación , Oocitos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Trends Genet ; 29(2): 99-107, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23146412

RESUMEN

Pluripotent cells have the unique ability to differentiate into diverse cell types. Over the past decade our understanding of the mechanisms underlying pluripotency, and particularly the role of transcriptional regulation, has increased dramatically. However, there is growing evidence for 'RNA-based' regulation of pluripotency. We use this term to describe control of gene expression by RNA-binding proteins (RBPs) and regulatory non-coding RNAs (ncRNAs). These molecules bind to specific elements within mRNAs and, by recruiting various effectors, affect many aspects of mRNA regulation. Here, we discuss the role of RBPs and ncRNAs in both the induction and maintenance of pluripotency. We highlight and contrast examples from pluripotent cell lines and in vivo systems while discussing the connection to transcriptional regulators.


Asunto(s)
Células Madre Pluripotentes/metabolismo , ARN Mensajero/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Genéticos , Células Madre Pluripotentes/citología , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
Development ; 140(3): 487-91, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23293280

RESUMEN

To ensure species continuity, the tantalising developmental plasticity of early embryonic cells, also called totipotency, must be transmitted to the offspring. This responsibility rests within the reproductive cell lineage: the germ line. At the recent EMBO/EMBL symposium 'Germline - Immortality through Totipotency', researchers discussed the mechanisms that establish and control totipotency, with an eye towards the mechanisms that may endow germ cells with the ability to propagate totipotency across generations.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Células Madre Totipotentes/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/genética , Núcleo Celular/fisiología , Proliferación Celular , Reprogramación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología , Gametogénesis , Células Germinativas/fisiología , Humanos , Patrón de Herencia , Oocitos/citología , Oocitos/fisiología , Células Madre Totipotentes/citología
10.
Nucleic Acids Res ; 42(12): 8092-105, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24838563

RESUMEN

The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Caenorhabditis elegans/química , Proteínas de Unión al ARN/química , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Uracilo/química
11.
Nucleic Acids Res ; 42(21): 13353-69, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25378320

RESUMEN

The cold shock domain is one of the most highly conserved motifs between bacteria and higher eukaryotes. Y-box-binding proteins represent a subfamily of cold shock domain proteins with pleiotropic functions, ranging from transcription in the nucleus to translation in the cytoplasm. These proteins have been investigated in all major model organisms except Caenorhabditis elegans. In this study, we set out to fill this gap and present a functional characterization of CEYs, the C. elegans Y-box-binding proteins. We find that, similar to other organisms, CEYs are essential for proper gametogenesis. However, we also report a novel function of these proteins in the formation of large polysomes in the soma. In the absence of the somatic CEYs, polysomes are dramatically reduced with a simultaneous increase in monosomes and disomes, which, unexpectedly, has no obvious impact on animal biology. Because transcripts that are enriched in polysomes in wild-type animals tend to be less abundant in the absence of CEYs, our findings suggest that large polysomes might depend on transcript stabilization mediated by CEY proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Polirribosomas/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análisis , Citoplasma/química , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/análisis , Ribonucleoproteínas/química
12.
PLoS Genet ; 9(3): e1003375, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555289

RESUMEN

The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2(LRR-1) promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2(LRR-1) also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2(LRR-1) inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proliferación Celular , Proteínas Cullin , Meiosis/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Replicación del ADN , Células Germinativas/citología , Células Germinativas/metabolismo , Mitosis , Fosfotransferasas/metabolismo , Complejo Sinaptonémico/metabolismo
13.
EMBO J ; 30(18): 3823-9, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21822213

RESUMEN

Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 activity in differentiating cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ciclo Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Células Madre/fisiología , Animales , Células Cultivadas
14.
EMBO J ; 30(3): 533-45, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21169991

RESUMEN

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development. To obtain a comprehensive picture of GLD-1 interactions with the transcriptome, we identified GLD-1-associated mRNAs by RNA immunoprecipitation followed by microarray detection. Based on the computational analysis of these mRNAs we generated a predictive model, where GLD-1 association with mRNA is determined by the strength and number of 7-mer GLD-1-binding motifs (GBMs) within UTRs. We verified this quantitative model both in vitro, by competition GLD-1/GBM-binding experiments to determine relative affinity, and in vivo, by 'transplantation' experiments, where 'weak' and 'strong' GBMs imposed translational repression of increasing strength on a non-target mRNA. This study demonstrates that transcriptome-wide identification of RBP mRNA targets combined with quantitative computational analysis can generate highly predictive models of post-transcriptional regulatory networks.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Redes Reguladoras de Genes/genética , Modelos Biológicos , Dominios y Motivos de Interacción de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Unión Competitiva , Caenorhabditis elegans/metabolismo , Biología Computacional/métodos , Inmunoprecipitación , Análisis por Micromatrices
15.
PLoS Genet ; 8(5): e1002742, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22693456

RESUMEN

Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are "stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1-dependent repression prevents precocious translation of OET-promoting mRNAs. Secondly, GLD-1- and CGH-1-dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET-promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans , Biosíntesis de Proteínas , ARN Mensajero , Proteínas de Unión al ARN , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Genoma , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Unión Proteica/genética , ARN Nucleotidiltransferasas/genética , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
PLoS One ; 18(6): e0287558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347777

RESUMEN

The methyltransferase-like protein 13 (METTL13) methylates the eukaryotic elongation factor 1 alpha (eEF1A) on two locations: the N-terminal amino group and lysine 55. The absence of this methylation leads to reduced protein synthesis and cell proliferation in human cancer cells. Previous studies showed that METTL13 is dispensable in non-transformed cells, making it potentially interesting for cancer therapy. However, METTL13 has not been examined yet in whole animals. Here, we used the nematode Caenorhabditis elegans as a simple model to assess the functions of METTL13. Using methyltransferase assays and mass spectrometry, we show that the C. elegans METTL13 (METL-13) methylates eEF1A (EEF-1A) in the same way as the human protein. Crucially, the cancer-promoting role of METL-13 is also conserved and depends on the methylation of EEF-1A, like in human cells. At the same time, METL-13 appears dispensable for animal growth, development, and stress responses. This makes C. elegans a convenient whole-animal model for studying METL13-dependent carcinogenesis without the complications of interfering with essential wild-type functions.


Asunto(s)
Neoplasias , Proteína Metiltransferasas , Animales , Humanos , Caenorhabditis elegans/genética , Metiltransferasas/genética , Carcinogénesis , Factor 1 de Elongación Peptídica/genética
17.
J Cell Sci ; 123(Pt 16): 2717-24, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20663921

RESUMEN

LA-related protein 1 (LARP-1) belongs to an RNA-binding protein family containing a LA motif. Here, we identify LARP-1 as a regulator of sex determination. In C. elegans hermaphrodites, a complex regulatory network regulates the switch from sperm to oocyte production. We find that simultaneous depletion of larp-1 and the Nanos homologue nos-3 results in germline masculinization. This phenotype is accompanied by a strong reduction of the levels of TRA-1, a GLI-family transcription factor that promotes oogenesis. TRA-1 levels are regulated by CBC(FEM-1), a ubiquitin ligase consisting of the FEM proteins, FEM-1, FEM-2 and FEM-3 and the cullin CUL-2. We show that both the masculinization phenotype and the reduction of TRA-1 levels observed in nos-3;larp-1 mutants require fem-3 activity, suggesting that nos-3 and larp-1 regulate the sperm-oocyte switch by inhibiting the fem genes. Consistently, fem-3 mRNA levels are increased in larp-1 mutants. By contrast, levels of fem-3 mRNA are not affected in nos-3 mutants. Therefore, our data indicate that LARP-1 and NOS-3 promote oogenesis by regulating fem-3 expression through distinct mechanisms.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Oogénesis/fisiología , Proteínas de Unión al ARN/metabolismo , Procesos de Determinación del Sexo/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Femenino , Sistema de Señalización de MAP Quinasas , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Oocitos/fisiología , Oogénesis/genética , Filogenia , Espermatozoides/fisiología
18.
Nat Commun ; 13(1): 4883, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986016

RESUMEN

How animals rewire cellular programs to survive cold is a fascinating problem with potential biomedical implications, ranging from emergency medicine to space travel. Studying a hibernation-like response in the free-living nematode Caenorhabditis elegans, we uncovered a regulatory axis that enhances the natural resistance of nematodes to severe cold. This axis involves conserved transcription factors, DAF-16/FoxO and PQM-1, which jointly promote cold survival by upregulating FTN-1, a protein related to mammalian ferritin heavy chain (FTH1). Moreover, we show that inducing expression of FTH1 also promotes cold survival of mammalian neurons, a cell type particularly sensitive to deterioration in hypothermia. Our findings in both animals and cells suggest that FTN-1/FTH1 facilitates cold survival by detoxifying ROS-generating iron species. We finally show that mimicking the effects of FTN-1/FTH1 with drugs protects neurons from cold-induced degeneration, opening a potential avenue to improved treatments of hypothermia.


Asunto(s)
Proteínas de Caenorhabditis elegans , Hipotermia , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hierro/metabolismo , Mamíferos/metabolismo , Ratones , Neuronas/metabolismo
19.
PLoS One ; 16(1): e0244505, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444416

RESUMEN

Nonsense-mediated mRNA decay (NMD) controls eukaryotic mRNA quality, inducing the degradation of faulty transcripts. Key players in the NMD pathway were originally identified, through genetics, in Caenorhabditis elegans as smg (suppressor with morphological effect on genitalia) genes. Using forward genetics and fluorescence-based NMD reporters, we reexamined the genetic landscape underlying NMD. Employing a novel strategy for mapping sterile mutations, Het-Map, we identified clk-2, a conserved gene previously implicated in DNA damage signaling, as a player in the nematode NMD. We find that CLK-2 is expressed predominantly in the germline, highlighting the importance of auxiliary factors in tissue-specific mRNA decay. Importantly, the human counterpart of CLK-2/TEL2, TELO2, has been also implicated in the NMD, suggesting a conserved role of CLK-2/TEL2 proteins in mRNA surveillance. Recently, variants of TELO2 have been linked to an intellectual disability disorder, the You-Hoover-Fong syndrome, which could be related to its function in the NMD.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas de Unión a Telómeros/genética , Regiones no Traducidas 3' , Animales , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Daño del ADN , Mutagénesis Sitio-Dirigida , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Regulación hacia Arriba
20.
Elife ; 102021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34505574

RESUMEN

Preferably, lifespan-extending therapies should work when applied late in life without causing undesired pathologies. Reducing insulin/insulin-like growth factor (IGF)-1 signaling (IIS) increases lifespan across species, but the effects of reduced IIS interventions in extreme geriatric ages remains unknown. Using the nematode Caenorhabditis elegans, we engineered the conditional depletion of the DAF-2/insulin/IGF-1 transmembrane receptor using an auxin-inducible degradation (AID) system. This allowed for the temporal and spatial reduction in DAF-2 protein levels at time points after which interventions such as RNAi become ineffective. Using this system, we found that AID-mediated depletion of DAF-2 protein surpasses the longevity of daf-2 mutants. Depletion of DAF-2 during early adulthood resulted in multiple adverse phenotypes, including growth retardation, germline shrinkage, egg retention, and reduced brood size. By contrast, AID-mediated depletion of DAF-2 post-reproduction, or specifically in the intestine in early adulthood, resulted in an extension of lifespan without these deleterious effects. Strikingly, at geriatric ages, when 75% of the population had died, AID-mediated depletion of DAF-2 protein resulted in a doubling in lifespan. Thus, we provide a proof-of-concept that even close to the end of an individual's lifespan, it is possible to slow aging and promote longevity.


The goal of geroscience, or research into old age, is to promote health during old age, and thus, to increase lifespan. In the body, the groups of biochemical reactions, or 'pathways', that allow an organism to sense nutrients, and regulate growth and stress, play major roles in ensuring healthy aging. Indeed, organisms that do not produce a working version of the insulin/IGF-1 receptor, a protein involved in one such pathway, show increased lifespan. In the worm Caenorhabditis elegans, mutations in the insulin/IGF-1 receptor can even double their lifespan. However, it is unclear whether this increase can be achieved once the organism has reached old age. To answer this question, Venz et al. genetically engineered the nematode worm C. elegans so that they could trigger the rapid degradation of the insulin/IGF-1 receptor either in the entire organism or in a specific tissue. Venz et al. started by aging several C. elegans worms for three weeks, until about 75% had died. At this point, they triggered the degradation of the insulin/IGF-1 receptor in some of the remaining worms, keeping the rest untreated as a control for the experiment. The results showed that the untreated worms died within a few days, while worms in which the insulin/IGF-1 receptor had been degraded lived for almost one more month. This demonstrates that it is possible to double the lifespan of an organism at the very end of life. Venz et al.'s findings suggest that it is possible to make interventions to extend an organism's lifespan near the end of life that are as effective as if they were performed when the organism was younger. This sparks new questions regarding the quality of this lifespan extension: do the worms become younger with the intervention, or is aging simply slowed down?


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Longevidad/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Mutación , Fenotipo , Receptor IGF Tipo 1/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA