Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 1): 258-266, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601945

RESUMEN

As part of its Extremely Brilliant Source (EBS) upgrade project, the ESRF's BM29 BioSAXS beamline was subject to a significant upgrade and refurbishment. In addition to the replacement of the beamline's original bending magnet source by a two-pole wiggler, leading to an increase in brilliance by a factor of 60, the sample environment of the beamline was almost completely refurbished: a vacuum-compatible Pilatus3 X 2M with a sensitive area of 253.7 mm × 288 mm and frame rates up to 250 Hz was installed, increasing the active area available and thus the q-scaling of scattering images taken; the sample changer was replaced with an upgraded version, allowing more space for customizable sample environments and the installation of two new sample exposure units; the software associated with the beamline was also renewed. In addition, the layout and functionality of the BSXCuBE3 (BioSAXS Customized Beamline Environment) data acquisition software was redesigned, providing an intuitive `user first' approach for inexperienced users, while at the same time maintaining more powerful options for experienced users and beamline staff. Additional features of BSXCuBE3 are queuing of samples; either consecutive sample changer and/or SEC-SAXS (size-exclusion chromatography small-angle X-ray scattering) experiments, including column equilibration were also implemented. Automatic data processing and analysis are now managed via Dahu, an online server with upstream data reduction, data scaling and azimuthal integration built around PyFAI (Python Fast Azimuthal Integration), and data analysis performed using the open source FreeSAS. The results of this automated data analysis pipeline are displayed in ISPyB/ExiSAXS. The upgraded BM29 has been in operation since the post-EBS restart in September 2020, and here a full description of its new hardware and software characteristics together with examples of data obtained are provided.


Asunto(s)
Robótica , Sincrotrones , Humanos , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Programas Informáticos , Recolección de Datos
3.
J Synchrotron Radiat ; 29(Pt 2): 581-590, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254323

RESUMEN

ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.


Asunto(s)
Lentes , Sincrotrones , Cristalografía por Rayos X , Recolección de Datos , Sustancias Macromoleculares/química
4.
J Synchrotron Radiat ; 25(Pt 2): 361-372, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488914

RESUMEN

Small-angle X-ray scattering (SAXS) analysis of biomolecules is increasingly common with a constantly high demand for comprehensive and efficient sample quality control prior to SAXS experiments. As monodisperse sample suspensions are desirable for SAXS experiments, latest dynamic light scattering (DLS) techniques are most suited to obtain non-invasive and rapid information about the particle size distribution of molecules in solution. A multi-receiver four-channel DLS system was designed and adapted at the BioSAXS endstation of the EMBL beamline P12 at PETRA III (DESY, Hamburg, Germany). The system allows the collection of DLS data within round-shaped sample capillaries used at beamline P12. Data obtained provide information about the hydrodynamic radius of biological particles in solution and dispersity of the solution. DLS data can be collected directly prior to and during an X-ray exposure. To match the short X-ray exposure times of around 1 s for 20 exposures at P12, the DLS data collection periods that have been used up to now of 20 s or commonly more were substantially reduced, using a novel multi-channel approach collecting DLS data sets in the SAXS sample capillary at four different neighbouring sample volume positions in parallel. The setup allows online scoring of sample solutions applied for SAXS experiments, supports SAXS data evaluation and for example indicates local inhomogeneities in a sample solution in a time-efficient manner. Biological macromolecules with different molecular weights were applied to test the system and obtain information about the performance. All measured hydrodynamic radii are in good agreement with DLS results obtained by employing a standard cuvette instrument. Moreover, applying the new multi-channel DLS setup, a reliable radius determination of sample solutions in flow, at flow rates normally used for size-exclusion chromatography-SAXS experiments, and at higher flow rates, was verified as well. This study also shows and confirms that the newly designed sample compartment with attached DLS instrumentation does not disturb SAXS measurements.


Asunto(s)
Dispersión del Ángulo Pequeño , Cromatografía en Gel , Dispersión Dinámica de Luz
5.
J Synchrotron Radiat ; 25(Pt 4): 1249-1260, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979188

RESUMEN

ID30B is an undulator-based high-intensity, energy-tuneable (6.0-20 keV) and variable-focus (20-200 µm in diameter) macromolecular crystallography (MX) beamline at the ESRF. It was the last of the ESRF Structural Biology Group's beamlines to be constructed and commissioned as part of the ESRF's Phase I Upgrade Program and has been in user operation since June 2015. Both a modified microdiffractometer (MD2S) incorporating an in situ plate screening capability and a new flexible sample changer (the FlexHCD) were specifically developed for ID30B. Here, the authors provide the current beamline characteristics and detail how different types of MX experiments can be performed on ID30B (http://www.esrf.eu/id30b).

6.
J Synchrotron Radiat ; 24(Pt 1): 323-332, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009574

RESUMEN

The macromolecular crystallography P13 beamline is part of the European Molecular Biology Laboratory Integrated Facility for Structural Biology at PETRA III (DESY, Hamburg, Germany) and has been in user operation since mid-2013. P13 is tunable across the energy range from 4 to 17.5 keV to support crystallographic data acquisition exploiting a wide range of elemental absorption edges for experimental phase determination. An adaptive Kirkpatrick-Baez focusing system provides an X-ray beam with a high photon flux and tunable focus size to adapt to diverse experimental situations. Data collections at energies as low as 4 keV (λ = 3.1 Å) are possible due to a beamline design minimizing background and maximizing photon flux particularly at low energy (up to 1011 photons s-1 at 4 keV), a custom calibration of the PILATUS 6M-F detector for use at low energies, and the availability of a helium path. At high energies, the high photon flux (5.4 × 1011 photons s-1 at 17.5 keV) combined with a large area detector mounted on a 2θ arm allows data collection to sub-atomic resolution (0.55 Å). A peak flux of about 8.0 × 1012 photons s-1 is reached at 11 keV. Automated sample mounting is available by means of the robotic sample changer `MARVIN' with a dewar capacity of 160 samples. In close proximity to the beamline, laboratories have been set up for sample preparation and characterization; a laboratory specifically equipped for on-site heavy atom derivatization with a library of more than 150 compounds is available to beamline users.

7.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 67-75, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615861

RESUMEN

Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.


Asunto(s)
Robótica , Dispersión del Ángulo Pequeño , Ensayos Analíticos de Alto Rendimiento , Sincrotrones
8.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1393-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22993093

RESUMEN

The use of automated systems for crystallization and X-ray data collection is now widespread. However, these two steps are separated by the need to transfer crystals from crystallization supports to X-ray data-collection supports, which is a difficult manual operation. Here, a new approach is proposed called CrystalDirect (CD) which enables full automation of the crystal-harvesting process. In this approach, crystals are grown on ultrathin films in a newly designed vapour-diffusion crystallization plate and are recovered by excision of the film through laser-induced photoablation. The film pieces containing crystals are then directly attached to a pin for X-ray data collection. This new method eliminates the delicate step of `crystal fishing', thereby enabling full automation of the crystal-mounting process. Additional advantages of this approach include the absence of mechanical stress and that it facilitates handling of microcrystals. The CD crystallization plates are also suitable for in situ crystal screening with minimal X-ray background. This method could enable the operational integration of highly automated crystallization and data-collection facilities, minimizing the delay between crystal identification and diffraction measurements. It can also contribute significantly to the advancement of challenging projects that require the systematic testing of large numbers of crystals.


Asunto(s)
Cristalización/instrumentación , Cristalización/métodos , Rayos Láser , Animales , Pollos , Cristalografía por Rayos X , Femenino , Muramidasa/química , Proteínas de Plantas/química , Robótica/instrumentación , Robótica/métodos , Dispersión de Radiación
9.
J Struct Biol ; 175(2): 236-43, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21385612

RESUMEN

The increase in the number of large multi-component complexes and membrane protein crystal structures determined over the last few years can be ascribed to a number of factors such as better protein expression and purification systems, the emergence of high-throughput crystallization techniques and the advent of 3rd generation synchrotron sources. However, many systems tend to produce crystals that can be extremely heterogeneous in their diffraction properties. This prevents, in many cases, the collection of diffraction data of sufficient quality to yield useful biological or phase information. Techniques that can increase the diffraction quality of macromolecular crystals can therefore be essential in the successful conclusion of these challenging projects. No technique is universal but encouraging results have been recently achieved by carrying out the controlled dehydration of crystals of biological macromolecules. A new device that delivers a stream of air with a precisely controlled relative humidity to the complicated sample environment found at modern synchrotron beamlines has been conceived at the EMBL Grenoble and developed by the EMBL and the ESRF as part of the SPINE2 complexes project, a European Commission funded protein structure initiative. The device, the HC1b, has been available for three years at the ESRF macromolecular crystallography beamlines and many systems have benefitted from on-line controlled dehydration. Here we describe a standard dehydration experiment, highlight some successful cases and discuss the different possible uses of the device.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Desecación/instrumentación , Complejos Multiproteicos/química , Transición de Fase , Amiloide/química , Frío , Cristalografía por Rayos X/métodos , Desecación/métodos , Humanos , Fosfoglicerato Quinasa/química , Complejo de Proteína del Fotosistema I/química , Sincrotrones/instrumentación
10.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1237-46, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19966409

RESUMEN

Dehydration of protein crystals is rarely used, despite being a post-crystallization method that is useful for the improvement of crystal diffraction properties, as it is difficult to reproduce and monitor. A novel device for hydration control of macromolecular crystals in a standard data-collection environment has been developed. The device delivers an air stream of precise relative humidity that can be used to alter the amount of water in macromolecular crystals. The device can be rapidly installed and is fully compatible with most standard synchrotron X-ray beamlines. Samples are mounted in cryoloops and the progress of dehydration can be monitored both optically and by the acquisition of diffraction images. Once the optimal hydration level has been obtained, cryocooling is easy to achieve by hand or by using a sample changer. The device has been thoroughly tested on several ESRF beamlines and is available to users.


Asunto(s)
Proteínas/análisis , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos , Animales , Pollos , Cristalización , Escherichia coli/química , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas/química , Agua/química
11.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 829-840, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28994412

RESUMEN

Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of miniSPINE was tested at different institutes using evaluation kits, and pilot beamlines are being equipped with compatible robotics for large-scale evaluation. A companion paper describes a new sample changer FlexED8 (Papp et al., 2017, Acta Cryst., D73, 841-851).


Asunto(s)
Cristalografía/instrumentación , Diseño de Equipo , Robótica/instrumentación , Tamaño de la Muestra , Sincrotrones
12.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 841-851, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28994413

RESUMEN

Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.


Asunto(s)
Cristalografía/instrumentación , Cristalografía/economía , Diseño de Equipo , Proteínas/química , Robótica/economía , Robótica/instrumentación , Manejo de Especímenes , Temperatura , Factores de Tiempo
13.
Prog Biophys Mol Biol ; 89(2): 124-52, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15910915

RESUMEN

The production of three-dimensional crystallographic structural information of macromolecules can now be thought of as a pipeline which is being streamlined at every stage from protein cloning, expression and purification, through crystallisation to data collection and structure solution. Synchrotron X-ray beamlines are a key section of this pipeline as it is at these that the X-ray diffraction data that ultimately leads to the elucidation of macromolecular structures are collected. The burgeoning number of macromolecular crystallography (MX) beamlines available worldwide may be enhanced significantly with the automation of both their operation and of the experiments carried out on them. This paper reviews the current situation and provides a glimpse of how a MX beamline may look in the not too distant future.


Asunto(s)
Cristalografía por Rayos X , Proteínas/química , Programas Informáticos , Conformación Proteica , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Sincrotrones/instrumentación
14.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 454-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27050125

RESUMEN

Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities.


Asunto(s)
Automatización de Laboratorios/métodos , Cristalografía por Rayos X/métodos , ADN Glicosilasas/química , Rayos Láser , Automatización de Laboratorios/instrumentación , Cristalografía por Rayos X/instrumentación , Humanos
15.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 966-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27487827

RESUMEN

Automation of the mounting of cryocooled samples is now a feature of the majority of beamlines dedicated to macromolecular crystallography (MX). Robotic sample changers have been developed over many years, with the latest designs increasing capacity, reliability and speed. Here, the development of a new sample changer deployed at the ESRF beamline MASSIF-1 (ID30A-1), based on an industrial six-axis robot, is described. The device, named RoboDiff, includes a high-capacity dewar, acts as both a sample changer and a high-accuracy goniometer, and has been designed for completely unattended sample mounting and diffraction data collection. This aim has been achieved using a high level of diagnostics at all steps of the process from mounting and characterization to data collection. The RoboDiff has been in service on the fully automated endstation MASSIF-1 at the ESRF since September 2014 and, at the time of writing, has processed more than 20 000 samples completely automatically.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Proteínas/química , Animales , Bacillus/química , Proteínas Bacterianas/química , Bovinos , Cristalografía por Rayos X/economía , Cristalografía por Rayos X/métodos , Diseño de Equipo , Robótica , Programas Informáticos , Termolisina/química , Tripsina/química
16.
J Appl Crystallogr ; 48(Pt 2): 431-443, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25844078

RESUMEN

A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization and the photon-counting PILATUS 2M detector enables the background-free detection of weak scattering signals. The high flux and small beam size allow for rapid experiments with exposure time down to 30-50 ms covering the resolution range from about 300 to 0.5 nm. P12 possesses a versatile and flexible sample environment system that caters for the diverse experimental needs required to study macromolecular solutions. These include an in-vacuum capillary mode for standard batch sample analyses with robotic sample delivery and for continuous-flow in-line sample purification and characterization, as well as an in-air capillary time-resolved stopped-flow setup. A novel microfluidic centrifugal mixing device (SAXS disc) is developed for a high-throughput screening mode using sub-microlitre sample volumes. Automation is a key feature of P12; it is controlled by a beamline meta server, which coordinates and schedules experiments from either standard or nonstandard operational setups. The integrated SASFLOW pipeline automatically checks for consistency, and processes and analyses the data, providing near real-time assessments of overall parameters and the generation of low-resolution models within minutes of data collection. These advances, combined with a remote access option, allow for rapid high-throughput analysis, as well as time-resolved and screening experiments for novice and expert biological SAXS users.

17.
Methods Mol Biol ; 1091: 197-203, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24203334

RESUMEN

The last years have seen a major development in automation for protein production, crystallization, and X-ray diffraction data collection, which has contributed to accelerate the pace of structure solution and to facilitate the study of ever more challenging targets through macromolecular crystallography. This has led to a considerable increase in the numbers of crystals produced and analyzed. However the process of recovering crystals from crystallization supports and mounting them in X-ray data collection pins remains a manual and delicate operation. Here we present a novel approach enabling full automation of the crystal mounting process and describe the operation of the first-automated CrystalDirect harvesting unit. Implications for crystallography applications and for the future operational integration of automated crystallization and data collection resources are discussed.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Proteínas/química , Automatización de Laboratorios , Difracción de Rayos X/métodos
18.
J Synchrotron Radiat ; 16(Pt 2): 163-72, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19240328

RESUMEN

X-rays can produce a high concentration of radicals within cryo-cooled macromolecular crystals. Some radicals have large extinction coefficients in the visible (VIS) range of the electromagnetic spectrum, and can be observed optically and spectrally. An online microspectrophotometer with high temporal resolution has been constructed that is capable of measuring UV/VIS absorption spectra (200-1100 nm) during X-ray data collection. The typical X-ray-induced blue colour that is characteristic of a wide range of cryo-conditions has been identified as trapped solvated electrons. Disulphide-containing proteins are shown to form disulphide radicals at millimolar concentrations, with absorption maxima around 400 nm. The solvated electrons and the disulphide radicals seem to have a lifetime in the range of seconds up to minutes at 100 K. The temperature dependence of the kinetics of X-ray-induced radical formation is different for the solvated electrons compared with the disulphide radicals. The online microspectrophotometer provides a technique complementary to X-ray diffraction for analysing and characterizing intermediates and redox states of proteins and enzymes.


Asunto(s)
Cristalización/métodos , Espectrofotometría Ultravioleta/instrumentación , Difracción de Rayos X/instrumentación , Frío , Color , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Sistemas en Línea , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrofotometría Ultravioleta/métodos , Difracción de Rayos X/métodos
19.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 11): 1348-57, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17057338

RESUMEN

A method is presented to automatically locate a crystal and its holder for centring on a goniometer spindle and alignment with an X-ray beam. Here, a novel algorithm that has been developed and tested with the images of users' crystals saved in an annotated database is described. The algorithm improves on the difficult situations that are commonly observed and poorly handled by the first-generation crystal-centring algorithms. These include highly transparent crystals, bad cryocooling or lens effects arising from the geometry of the drop. Most crystals have polyhedral shapes and a number of straight edges, which yield useful information. In this method, crystal detection relies on a feature-scoring system in which line extraction has the highest weight. Here, the image processing and calculations implemented in the program C3D are described. This program is designed to operate with a client program that controls specific diffractometer hardware. In order to select the best detection conditions, C3D provides various functionalities adapted to various hardware configurations.


Asunto(s)
Automatización , Programas Informáticos , Automatización/métodos , Cristalografía por Rayos X/métodos
20.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 3): 253-61, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16510972

RESUMEN

Structural proteomics has promoted the rapid development of automated protein structure determination using X-ray crystallography. Robotics are now routinely used along the pipeline from genes to protein structures. However, a bottleneck still remains. At synchrotron beamlines, the success rate of automated sample alignment along the X-ray beam is limited by difficulties in visualization of protein crystals, especially when they are small and embedded in mother liquor. Despite considerable improvement in optical microscopes, the use of visible light transmitted or reflected by the sample may result in poor or misleading contrast. Here, the endogenous fluorescence from aromatic amino acids has been used to identify even tiny or weakly fluorescent crystals with a high success rate. The use of a compact laser at 266 nm in combination with non-fluorescent sample holders provides an efficient solution to collect high-contrast fluorescence images in a few milliseconds and using standard camera optics. The best image quality was obtained with direct illumination through a viewing system coaxial with the UV beam. Crystallographic data suggest that the employed UV exposures do not generate detectable structural damage.


Asunto(s)
Proteínas/química , Cristalización , Cristalografía , Fluorescencia , Insulina/química , Rayos Láser , Muramidasa/química , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA