Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Model Softw ; 90: 68-77, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28373812

RESUMEN

To cope with computing power limitations, air quality models that are used in integrated assessment applications are generally approximated by simpler expressions referred to as "source-receptor relationships (SRR)". In addition to speed, it is desirable for the SRR also to be spatially flexible (application over a wide range of situations) and to require a "light setup" (based on a limited number of full Air Quality Models - AQM simulations). But "speed", "flexibility" and "light setup" do not naturally come together and a good compromise must be ensured that preserves "accuracy", i.e. a good comparability between SRR results and AQM. In this work we further develop a SRR methodology to better capture spatial flexibility. The updated methodology is based on a cell-to-cell relationship, in which a bell-shape function links emissions to concentrations. Maintaining a cell-to-cell relationship is shown to be the key element needed to ensure spatial flexibility, while at the same time the proposed approach to link emissions and concentrations guarantees a "light set-up" phase. Validation has been repeated on different areas and domain sizes (countries, regions, province throughout Europe) for precursors reduced independently or contemporarily. All runs showed a bias around 10% between the full AQM and the SRR. This methodology allows assessing the impact on air quality of emission scenarios applied over any given area in Europe (regions, set of regions, countries), provided that a limited number of AQM simulations are performed for training.

2.
J Environ Manage ; 183(Pt 3): 952-958, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681870

RESUMEN

Although significant progress has been made in Europe regarding air quality, problems still remain acute for some pollutants, notably NO2 and Particulate Matter (fine and coarse fractions) in specific regions/cities. One issue regarding air quality management is governance, i.e. the selection of appropriate and cost effective strategies over the area controlled by policy makers. In this work we present a new approach to integrated assessment modelling focusing on regional and urban aspects. One of the key added values is spatial flexibility, namely the possibility to assess the contributions from different regions to air quality at any given location. The SHERPA tool is shown to be particularly helpful in addressing the following tasks: source allocation, governance and the assessment of scenario impacts. Application of the methodology over the London area for yearly averaged PM2.5 concentrations demonstrates these features. Given that it is possible to use the SHERPA interface with other types of data, SHERPA can also be seen as a means to foster harmonization in the field of model evaluation.


Asunto(s)
Contaminación del Aire/análisis , Técnicas de Apoyo para la Decisión , Contaminantes Atmosféricos/análisis , Ciudades , Ambiente , Monitoreo del Ambiente/métodos , Europa (Continente) , Londres , Modelos Teóricos , Material Particulado/análisis
3.
Environ Int ; 156: 106699, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34171590

RESUMEN

Given the remaining air quality issues in many European regions, smart air quality strategies are necessary to reduce the burden of poor air quality. While designing effective strategies for non-reactive primary pollutants is straightforward, this is not the case for secondary pollutants for which the relationship between emission changes and the resulting concentration changes can be nonlinear. Under such conditions, strategies targeting the largest emitting sources might not be the most effective. In this work, we provide elements to better understand the role of the main emission precursors (SO2, NOx, NH3) on the formation of secondary inorganic aerosols. By quantifying the PM2.5 sensitivity to emission reductions for each of these three precursors, we define and quantify the intensity of PM2.5 formation chemical regimes across Europe. We find that for emission reductions limited to 25%, the relation between emission and PM concentration changes remain mostly linear, with the exception of the Po Valley where non-linearities reach more than 30% in winter. When emission reductions increase to 50%, non-linearity reaches more than 60% in the Po Valley but stay below 30% in the rest of Europe. In terms of implications on abatement strategies, our findings can be summarized in the following key messages: (1) reducing SO2 emissions where abundant is always efficient (e.g. eastern Europe and Balkans); (2) reducing NH3 emissions is more efficient where it is less abundant (e.g. the Po basin) than where it is abundant, given the limiting role of NH3 in the PM formation; (3) reducing NOx emissions where NOx are abundant can be counter-productive with potential increases of PM due to the increased oxidant capacity of the atmosphere (e.g. Po valley); (4) because regions with both NH3 and NOx sensitive chemical regimes are mixed within countries, both need to be reduced together, as pollution reduction policies need at least to be defined at a country level; (6) while for NH3 the focus is clearly on wintertime, it is the whole year for NOx. The simulations proposed in this work could be used as benchmark for other models as they constitute the type of scenarios required to support air quality strategies. In addition, the straight and systematic emission reductions imposed for the scenarios in this work are well suited for a better understanding of the behavior of the model, in terms of responses to emission reductions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Peninsula Balcánica , Monitoreo del Ambiente , Material Particulado/análisis
4.
Environ Int ; 130: 104825, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31226558

RESUMEN

Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via "brute-force" methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.


Asunto(s)
Contaminación del Aire/análisis
5.
Air Qual Atmos Health ; 10(2): 235-248, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250866

RESUMEN

Regional and local authorities have the obligation to design air quality plans and assess their impacts when concentration levels exceed the limit values. Because these limit values cover both short- (day) and long-term (year) effects, air quality plans also follow these two formats. In this work, we propose a methodology to analyze modeled air quality forecast results, looking at emission reduction for different sectors (residential, transport, agriculture, etc.) with the aim of supporting policy makers in assessing the impact of short-term action plans. Regarding PM10, results highlight the diversity of responses across European cities, in terms of magnitude and type that raises the necessity of designing area-specific air quality plans. Action plans extended from 1 to 3 days (i.e., emissions reductions applied for 24 and 72 h, respectively) point to the added value of trans-city coordinated actions. The largest benefits are seen in central Europe (Vienna, Prague) while major cities (e.g., Paris) already solve a large part of the problem on their own. Eastern Europe would particularly benefit from plans based on emission reduction in the residential sectors; while in northern cities, agriculture seems to be the key sector on which to focus attention. Transport is playing a key role in most cities whereas the impact of industry is limited to a few cities in south-eastern Europe. For NO2, short-term action plans focusing on traffic emission reductions are efficient in all cities. This is due to the local character of this type of pollution. It is important, however, to stress that these results remain dependent on the selected months available for this study.

6.
Air Qual Atmos Health ; 9: 325-333, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27239243

RESUMEN

A methodology is proposed to support the evaluation and comparison of different types of emission inventories. The strengths and weaknesses of the methodology are presented and discussed based on an example. The approach results in a "diamond" diagram useful to flag out anomalous behaviors in the emission inventories and to get insight in possible explanations. In particular, the "diamond" diagram is shown to provide meaningful information in terms of: discrepancies between the total emissions reported by macro-sector and pollutant, contribution of each macro-sector to the total amount of emissions released by pollutant, and the identification and quantification of the different factors causing the discrepancies between total emissions. A practical example in Barcelona is used for testing and to provide relevant information for the analyzed emission datasets. The tests show the capability of the proposed methodology to flag inconsistencies in the existing inventories. The proposed methodology system may be useful for regional and urban inventory developers as an initial evaluation of the consistency of their inventories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA