Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 47(20): 9410-8, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18811150

RESUMEN

This paper focuses on DNA-binding interactions exhibited by Pt(dma-T)CN(+), where dma-T denotes 4'-dimethylamino-2,2':6',2''-terpyridine, and includes complementary studies of the corresponding pyrr-T complex, where pyrr-T denotes 4'-(N-pyrrolidinyl)-2,2':6',2''-terpyridine. The chromophores are useful for understanding the interesting and rather intricate DNA-binding interactions exhibited by these and related systems. One reason is that the terpyridine ligands employed provide intense visible absorption and enhanced photoluminescence signals. Incorporating cyanide as a coligand further aids analysis by suppressing covalent binding. Physical methods utilized include X-ray crystallography for structures of the individual inorganic complexes. Viscometry as well as spectral studies of the absorbance, emission, and circular dichroism (CD) yield information about interactions with a variety of DNA hosts. Although there is no sign of covalent binding under the conditions used, most hosts exhibit two phases of uptake. Under conditions of high loading (low base-pair-to-platinum ratios), the dma-T complex preferentially binds externally and aggregates on the surface of the host, except for the comparatively rigid host [poly(dG-dC)]2. Characteristic signs of the aggregated form include a bisignate CD signal in the charge-transfer region of the spectrum and strongly bathochromically shifted emission. When excess DNA is present, however, the complex shifts to intercalative binding, preferentially next to G[triple bond]C base pairs if available. Once the complex internalizes into DNA it becomes virtually immune to quenching by O2 or solvent, and the emission lifetime extends to 11 micros when [poly(dI-dC)]2 is the host. On the other hand, the host itself becomes a potent quenching agent when G[triple bond]C base pairs are present because of the reducing strength of guanine residues.


Asunto(s)
ADN/metabolismo , Compuestos Organometálicos/química , Paladio/química , Piridinas/química , Absorción , Dicroismo Circular , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Organometálicos/metabolismo
2.
Chemistry ; 14(24): 7168-79, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18600825

RESUMEN

Neutral orthometalated platinum(II) complexes of the deprotonated 6-phenyl-2,2'-bipyridine ligand (bearing a trialkoxygallate, tolyl, ethynyltrialkoxygallate, or ethynyltolyl substituent) and a sigma-bonded Cl, ethynyltolyl, or ethynyltrialkoxygallate coligand have been prepared by a stepwise procedure based on copper-promoted cross-coupling reactions. The X-ray structure of the [2-(p-tolyl)ethynyl][4-{2-(p-tolyl)ethynyl}-6-phenyl-2,2'-bipyridyl)]platinum(II) complex revealed a coplanar arrangement of all residues bound to platinum, although the tolylethynyl groups exhibit position-dependent bending in the solid state. The complexes exhibit charge-transfer absorption in the visible region. All except two of the complexes also exhibit charge-transfer emission, typically from an excited state that has a submicrosecond lifetime at room temperature in deoxygenated dichloromethane solution. In accordance with the presence of a carbometalated polypyridine ligand, the emitting state is assumed to have a mixture of metal-to-ligand charge-transfer (MLCT) and intra-ligand charge-transfer (ILCT) character. However, spectral comparisons and electrochemical data suggest that the emissive state also exhibits interligand charge-transfer (LLCT) character when an electron-rich ethynylaryl group is bound to platinum. In keeping with altered orbital parentage in the latter systems, the emission occurs at longer wavelength. The excited-state lifetime is also shorter, evidently due to vibronic interactions. The decay is so efficient when an ethynyltrialkoxygallate group binds to platinum that there is no detectable emission in fluid solution, although the complexes do emit in a frozen glass. The excited states are subject to associative (exciplex) quenching by Lewis bases, but the admixture of ILCT and/or LLCT character diminishes efficiency, except for relatively strong bases like dimethyl sulfoxide and dimethylformamide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA