Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 57(3): 398-409, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26658238

RESUMEN

Studies in lipoprotein kinetics almost exclusively rely on steady-state approaches to modeling. Herein, we have used a non-steady-state experimental design to examine the role of cholesteryl ester transfer protein (CETP) in mediating HDL-TG flux in vivo in rhesus macaques, and therefore, we developed an alternative strategy to model the data. Two isotopomers ([(2)H11] and [(13)C18]) of oleic acid were administered (orally and intravenously, respectively) to serve as precursors for labeling TGs in apoB-containing lipoproteins. The flux of a specific TG (52:2) from these donor lipoproteins to HDL was used as the measure of CETP activity; calculations are also presented to estimate total HDL-TG flux. Based on our data, we estimate that the peak total postprandial TG flux to HDL via CETP is ∼ 13 mg · h(-1) · kg(-1) and show that this transfer was inhibited by 97% following anacetrapib treatment. Collectively, these data demonstrate that HDL TG flux can be used as a measure of CETP activity in vivo. The fact that the donor lipoproteins can be labeled in situ using well-established stable isotope tracer techniques suggests ways to measure this activity for native lipoproteins in free-living subjects under any physiological conditions.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Oxazolidinonas/farmacología , Triglicéridos/metabolismo , Animales , Lipoproteínas HDL/sangre , Macaca mulatta , Masculino , Modelos Biológicos , Triglicéridos/sangre
2.
Biochim Biophys Acta ; 1842(3): 402-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23707557

RESUMEN

Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Lípidos/biosíntesis , Triglicéridos/metabolismo , Distribución de la Grasa Corporal , Colesterol/biosíntesis , Colesterol/metabolismo , Metabolismo Energético , Humanos , Cinética , Triglicéridos/química
3.
Proc Natl Acad Sci U S A ; 109(24): 9545-50, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22623531

RESUMEN

MYC oncogene family members are broadly implicated in human cancers, yet are considered "undruggable" as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ~3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcriptional elongation, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously "undruggable" oncogene.


Asunto(s)
Genes myc , Genómica , Neoplasias/tratamiento farmacológico , Caseína Cinasa 1 épsilon/metabolismo , Humanos , Neoplasias/genética , ARN Interferente Pequeño
4.
Rapid Commun Mass Spectrom ; 28(3): 239-44, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24375874

RESUMEN

RATIONALE: The ability to measure low levels of (2)H-labeling is important in studies of metabolic flux, e.g. one can estimate lipid synthesis by administering (2)H2O and then measuring the incorporation of (2)H into fatty acids. Unfortunately, the analyses are complicated by the presence of more abundant naturally occurring stable isotopes, e.g. (13)C. Conventional approaches rely on coupling gas chromatographic separation of lipids with either quadrupole-mass spectrometry (q-MS) and/or pyrolysis-isotope ratio mass spectrometry (IRMS). The former is limited by high background labeling (primarily from (13)C) whereas the latter is not suitable for routine high-throughput analyses. METHODS: We have contrasted the use of continuous flow-pyrolysis-IRMS against high-resolution mass spectrometry (i.e. Qq-FT-ICR MS) for measuring the (2)H-enrichment of fatty acids and peptides. RESULTS: In contrast to IRMS, which requires ~30 min per analysis, it is possible to measure the (2)H-enrichment of palmitate via direct infusion high-resolution mass spectrometry (HRMS) in ~3 min per sample. In addition, Qq-FT-ICR MS enabled measurements of the (2)H-enrichment of peptides (which is not possible using IRMS). CONCLUSIONS: High-resolution mass spectrometry can be used to measure low levels of (2)H-labeling so we expect that this approach will enhance studies of metabolic flux that rely on (2)H-labeled tracers, e.g. (2)H2O. However, since the high-resolution analyses require greater amounts of a given analyte one potential limitation centers on the overall sensitivity. Presumably, future advances can overcome this barrier.


Asunto(s)
Deuterio/análisis , Ácidos Grasos/química , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Animales , Chlorocebus aethiops , Deuterio/química , Deuterio/metabolismo , Óxido de Deuterio/administración & dosificación , Ácidos Grasos/metabolismo , Femenino , Modelos Lineales , Macaca mulatta , Masculino , Péptidos/química , Péptidos/metabolismo
5.
Nat Genet ; 37(11): 1281-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16200065

RESUMEN

Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry. These constructs include silencing triggers designed to mimic a natural microRNA primary transcript, and each target sequence was selected on the basis of thermodynamic criteria for optimal small RNA performance. Biochemical and phenotypic assays indicate that the new libraries are substantially improved over first-generation reagents. We generated large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes. These libraries are available to the scientific community.


Asunto(s)
Biblioteca de Genes , Genoma Humano , Ratones/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Silenciador del Gen , Humanos , MicroARNs/metabolismo , Plásmidos
6.
Anal Chem ; 85(13): 6287-94, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23668715

RESUMEN

We have previously reported on a liquid chromatography-mass spectrometry method to determine the disposition of [(13)C18]-oleic acid following intravenous and oral administration in vivo. This approach has enabled us to study a variety of aspects of lipid metabolism including a quantitative assessment of triglyceride synthesis. Here we present a more rigorous evaluation of the constraints imposed upon the analytical method in order to generate accurate data using this stable-isotope tracer approach along with more detail on relevant analytical figures of merit including limits of quantitation, precision, and accuracy. The use of mass isotopomer distribution analysis (MIDA) to quantify plasma triglyceride synthesis is specifically highlighted, and a re-evaluation of the underlying mathematics has enabled us to present a simplified series of equations. The derivation of this MIDA model and the significance of all underlying assumptions are explored in detail, and examples are given of how it can successfully be applied to detect differences in plasma triglyceride synthesis in lean and high-fat diet fed mouse models. More work is necessary to evaluate the applicability of this approach to triglyceride stores with slower rates of turnover such as in adipose or muscle tissue; however, the present report provides investigators with the tools necessary to conduct such studies.


Asunto(s)
Espectrometría de Masas/métodos , Ácido Oléico/análisis , Triglicéridos/biosíntesis , Triglicéridos/sangre , Animales , Isótopos de Carbono , Ratones , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/diagnóstico , Ácido Oléico/administración & dosificación
7.
Nature ; 447(7148): 1130-4, 2007 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-17554337

RESUMEN

A global decrease in microRNA (miRNA) levels is often observed in human cancers, indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wild-type and p53-deficient cells. Here we describe a family of miRNAs, miR-34a-c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.


Asunto(s)
Ciclo Celular/genética , Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , División Celular/genética , Línea Celular , Daño del ADN , Ratones , Especificidad por Sustrato , Transcripción Genética
8.
J Biol Chem ; 286(35): 30706-30713, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21737452

RESUMEN

Hepatocellular carcinoma (HCC) is a heterogeneous and highly aggressive malignancy, for which there are no effective cures. Identification of a malignant stemlike subtype of HCC may offer patients with a dismal prognosis a potential targeted therapy using c-MET and Wnt pathway inhibitors. MicroRNAs (miRNAs) show promise as diagnostic and prognostic tools for cancer detection and stratification. Using a TRE-c-Met-driven transgenic HCC mouse model, we identified a cluster of 23 miRNAs that is encoded within the Dlk1-Gtl2 imprinted region on chromosome 12qF1 overexpressed in all of the isolated liver tumors. Interestingly, this region is conserved among mammalian species and maps to the human DLK1-DIO3 region on chromosome 14q32.2. We thus examined the expression of the DLK1-DIO3 miRNA cluster in a cohort of 97 hepatitis B virus-associated HCC patients and identified a subgroup (n = 18) of patients showing strong coordinate overexpression of miRNAs in this cluster but not in other cancer types (breast, lung, kidney, stomach, and colon) that were tested. Expression levels of imprinted gene transcripts from neighboring loci in this 14q32.2 region and from a subset of other imprinted sites were concomitantly elevated in human HCC. Interestingly, overexpression of the DLK1-DIO3 miRNA cluster was positively correlated with HCC stem cell markers (CD133, CD90, EpCAM, Nestin) and associated with a high level of serum α-fetoprotein, a conventional biomarker for liver cancer, and poor survival rate in HCC patients. In conclusion, our findings suggest that coordinate up-regulation of the DLK1-DIO3 miRNA cluster at 14q32.2 may define a novel molecular (stem cell-like) subtype of HCC associated with poor prognosis.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Cromosomas Humanos Par 14/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Proteínas de la Membrana/genética , MicroARNs/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio , Estudios de Cohortes , Humanos , Hígado/metabolismo , MicroARNs/metabolismo , Familia de Multigenes , Pronóstico , Distribución Tisular , Resultado del Tratamiento , Regulación hacia Arriba
9.
Apoptosis ; 17(7): 691-701, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22392482

RESUMEN

Tumor suppressor genes BRCA1 and BRCA2 function in a complex gene network that regulates homologous recombination and DNA double-strand break repair. Disruption of the BRCA-network through gene mutation, deletion, or RNAi-mediated silencing can sensitize cells to small molecule inhibitors of poly (ADP-ribose) polymerase (PARPi). Here, we demonstrate that BRCA-network disruption in the presence of PARPi leads to the selective induction and enhancement of interferon pathway and apoptotic gene expression in cultured tumor cells. In addition, we report PARPi cytotoxicity in BRCA1-deficient tumor cells is enhanced >10-fold when combined with interferon-γ. These findings establish a link between synthetic lethality of PARPi in BRCA-network disrupted cells and interferon pathway activation triggered by genetic instability.


Asunto(s)
Proteína BRCA1/genética , Redes Reguladoras de Genes/genética , Interferón gamma/metabolismo , Interferón gamma/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína BRCA1/metabolismo , Ciclo Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HT29 , Células HeLa , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/genética
10.
RNA ; 16(5): 879-84, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348445

RESUMEN

Along with silencing intended target genes, transfected siRNAs regulate numerous unintended transcripts through a mechanism in which the equivalent of a microRNA-like seed region in the siRNA recognizes complementary sequences in transcript 3' UTRs. Amelioration of this off-target silencing would lead to more accurate interpretation of RNA interference (RNAi) experiments and thus greatly enhance their value. We tested whether lentivirus-mediated delivery of shRNA is prone to the sequence-based off-target activity prevalent in siRNA experiments. We compared target gene silencing and overall impact on global gene expression caused by multiple sequences delivered as both transfected siRNAs and lentivirus vector-expressed shRNAs. At equivalent levels of target gene silencing, signatures induced by shRNAs were significantly smaller than those induced by cognate siRNAs and arose less frequently from seed region activity. Interestingly, the low level of seed region-based off-target activity exhibited by shRNAs resulted in down-regulation of transcripts that were largely distinct from those regulated by siRNAs. On the basis of these observations, we recommend lentivirus-mediated RNAi for pathway profiling experiments that measure whole genome transcriptional readouts as well as for large-scale screens when resources for extensive follow up are limited.


Asunto(s)
Lentivirus/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Secuencia de Bases , Silenciador del Gen , Genes p53 , Vectores Genéticos , Células HeLa , Humanos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Transducción Genética , Transfección
11.
Curr Biol ; 18(22): 1735-41, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19026546

RESUMEN

Genomic imprinting restricts gene expression to a paternal or maternal allele. To date, approximately 90 imprinted transcripts have been identified in mouse, of which the majority were detected after intense interrogation of clusters of imprinted genes identified by phenotype-driven assays in mice with uniparental disomies [1]. Here we use selective priming and parallel sequencing to measure allelic bias in whole transcriptomes. By distinguishing parent-of-origin bias from strain-specific bias in embryos derived from a reciprocal cross of mice, we constructed a genome-wide map of imprinted transcription. This map was able to objectively locate over 80% of known imprinted loci and allowed the detection and confirmation of six novel imprinted genes. Even in the intensely studied embryonic day 9.5 developmental stage that we analyzed, more than half of all imprinted single-nucleotide polymorphisms did not overlap previously discovered imprinted transcripts; a large fraction of these represent novel noncoding RNAs within known imprinted loci. For example, a previously unnoticed, maternally expressed antisense transcript was mapped within the Grb10 locus. This study demonstrates the feasibility of using transcriptome sequencing for mapping of imprinted gene expression in physiologically normal animals. Such an approach will allow researchers to study imprinting without restricting themselves to individual loci or specific transcripts.


Asunto(s)
Perfilación de la Expresión Génica , Genoma , Impresión Genómica , Alelos , Animales , Mapeo Cromosómico , Ratones , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
12.
Assay Drug Dev Technol ; 6(1): 105-19, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18205551

RESUMEN

Abstract: Induction of RNA interference (RNAi) in human cells has enabled comprehensive functional annotation of the human genome via reverse genetic screens. Here we describe an optimized semiautomated method to produce, titrate, and screen large collections of short hairpin RNA (shRNA)-containing lentiviral vectors. We also present results from a pilot lentiviral RNAi screen for kinases whose silencing modulates sensitivity to a mitotic spindle protein kinesin-5 inhibitor (kinesin-5i). Our screen identified three distinct serine/threonine kinase 6 shRNA vectors within our library as enhancers of kinesin-5i-mediated HT29 cell growth inhibition. In contrast, three distinct shRNAs targeting cell division cycle 2/cyclin-dependent kinase 1 resulted in kinesin-5i resistance. These results demonstrate the feasibility of screening with large collections of lentiviral vectors to identify drug enhancers and suppressors.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Lentivirus/efectos de los fármacos , Lentivirus/genética , Interferencia de ARN/efectos de los fármacos , ARN Viral/química , ARN Viral/genética , Automatización , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Silenciador del Gen/efectos de los fármacos , Vectores Genéticos , Células HT29 , Células HeLa , Humanos , Infecciones por Lentivirus/virología , Análisis por Micromatrices , Conformación de Ácido Nucleico , Plásmidos/genética , ARN Viral/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Robótica , Transfección
13.
Nat Biotechnol ; 23(2): 227-31, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15619616

RESUMEN

Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.


Asunto(s)
Regulación de la Expresión Génica/genética , Silenciador del Gen/fisiología , Marcación de Gen/métodos , Ingeniería Genética/métodos , ARN Interferente Pequeño/genética , Transfección/métodos , ARN Interferente Pequeño/química
14.
Methods Enzymol ; 561: 331-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26358910

RESUMEN

Stable isotope tracers are widely used to quantify metabolic rates, and yet a limited number of studies have considered the impact of analytical error on estimates of flux. For example, when estimating the contribution of de novo lipogenesis, one typically measures a minimum of four isotope ratios, i.e., the precursor and product labeling pre- and posttracer administration. This seemingly simple problem has 1 correct solution and 80 erroneous outcomes. In this report, we outline a methodology for evaluating the effect of error propagation on apparent physiological endpoints. We demonstrate examples of how to evaluate the influence of analytical error in case studies concerning lipid and protein synthesis; we have focused on (2)H2O as a tracer and contrast different mass spectrometry platforms including GC-quadrupole-MS, GC-pyrolysis-IRMS, LC-quadrupole-MS, and high-resolution FT-ICR-MS. The method outlined herein can be used to determine how to minimize variations in the apparent biology by altering the dose and/or the type of tracer. Likewise, one can facilitate biological studies by estimating the reduction in the noise of an outcome that is expected for a given increase in the number of replicate injections.


Asunto(s)
Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Metabolismo , Animales , Isótopos de Carbono , Cromatografía de Gases/métodos , Cromatografía Liquida/métodos , Óxido de Deuterio , Humanos , Relación Señal-Ruido
15.
Cancer Immunol Res ; 2(11): 1071-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25116754

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive, polyomavirus-associated skin cancer. Robust cellular immune responses are associated with excellent outcomes in patients with MCC, but these responses are typically absent. We determined the prevalence and reversibility of major histocompatibility complex class I (MHC-I) downregulation in MCC, a potentially reversible immune-evasion mechanism. Cell-surface MHC-I expression was assessed on five MCC cell lines using flow cytometry as well as immunohistochemistry on tissue microarrays representing 114 patients. Three additional patients were included who had received intralesional IFN treatment and had evaluable specimens before and after treatment. mRNA expression analysis of antigen presentation pathway genes from 35 MCC tumors was used to examine the mechanisms of downregulation. Of note, 84% of MCCs (total n = 114) showed reduced MHC-I expression as compared with surrounding tissues, and 51% had poor or undetectable MHC-I expression. Expression of MHC-I was lower in polyomavirus-positive MCCs than in polyomavirus-negative MCCs (P < 0.01). The MHC-I downregulation mechanism was multifactorial and did not depend solely on HLA gene expression. Treatment of MCC cell lines with ionizing radiation, etoposide, or IFN resulted in MHC-I upregulation, with IFNs strongly upregulating MHC-I expression in vitro, and in 3 of 3 patients treated with intralesional IFNs. MCC tumors may be amenable to immunotherapy, but downregulation of MHC-I is frequently present in these tumors, particularly those that are positive for polyomavirus. This downregulation is reversible with any of several clinically available treatments that may thus promote the effectiveness of immune-stimulating therapies for MCC.


Asunto(s)
Carcinoma de Células de Merkel/inmunología , Antígenos de Histocompatibilidad Clase I/biosíntesis , Neoplasias Cutáneas/inmunología , Escape del Tumor/inmunología , Antineoplásicos/uso terapéutico , Carcinoma de Células de Merkel/tratamiento farmacológico , Línea Celular Tumoral , Regulación hacia Abajo , Citometría de Flujo , Humanos , Inmunohistoquímica , Interferón beta/uso terapéutico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/tratamiento farmacológico , Análisis de Matrices Tisulares
16.
Eur J Pharmacol ; 740: 410-6, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-24769414

RESUMEN

Inhibition of cholesteryl ester transfer protein (CETP) has been vigorously pursued as a potential therapy to treat patients who are at an elevated risk for coronary artery disease. Anacetrapib, a novel CETP inhibitor, has been shown clinically to raise HDL cholesterol and reduce LDL cholesterol when provided as monotherapy or when co-administered with a statin. Preclinically, the effects of anacetrapib on the functionality and composition of HDL have been extensively studied. In contrast, the effects of anacetrapib on other parameters related to lipoprotein metabolism and cardiovascular risk have been difficult to explore. The aim of the present investigation was to evaluate the effects of anacetrapib in rhesus macaques and to compare these to effects reported in dyslipidemic humans. Our results from two separate studies show that administration of anacetrapib (150 mg/kg q.d. for 10 days) to rhesus macaques results in alterations in CETP activity (reduced by more than 70%) and HDL cholesterol (increased by more than 110%) which are similar to those reported in dyslipidemic humans. Levels of LDL cholesterol were reduced by more than 60%, an effect slightly greater than what has been observed clinically. Treatment with anacetrapib in this model was also found to lead to statistically significant reductions in plasma PCSK9 and to reduce cholesterol excursion in the combined chylomicron and remnant lipoprotein fraction isolated from plasma by fast protein liquid chromatography. Collectively, these data suggest that rhesus macaques may be a useful translational model to study the mechanistic effects of CETP inhibition.


Asunto(s)
Anticolesterolemiantes/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Oxazolidinonas/farmacología , Animales , Apolipoproteínas/sangre , Proteínas de Transferencia de Ésteres de Colesterol/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Macaca mulatta , Masculino , Proproteína Convertasas/sangre , Serina Endopeptidasas/sangre , Triglicéridos/sangre
17.
F1000Res ; 2: 134, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358901

RESUMEN

The inability of targeted BRAF inhibitors to produce long-lasting improvement in the clinical outcome of melanoma highlights a need to identify additional approaches to inhibit melanoma growth. Recent studies have shown that activation of the Wnt/ß-catenin pathway decreases tumor growth and cooperates with ERK/MAPK pathway inhibitors to promote apoptosis in melanoma. Therefore, the identification of Wnt/ß-catenin regulators may advance the development of new approaches to treat this disease. In order to move towards this goal we performed a large scale small-interfering RNA (siRNA) screen for regulators of ß-catenin activated reporter activity in human HT1080 fibrosarcoma cells. Integrating large scale siRNA screen data with phosphoproteomic data and bioinformatics enrichment identified a protein, FAM129B, as a potential regulator of Wnt/ß-catenin signaling.  Functionally, we demonstrated that siRNA-mediated knockdown of FAM129B in A375 and A2058 melanoma cell lines inhibits WNT3A-mediated activation of a ß-catenin-responsive luciferase reporter and inhibits expression of the endogenous Wnt/ß-catenin target gene, AXIN2. We also demonstrate that FAM129B knockdown inhibits apoptosis in melanoma cells treated with WNT3A. These experiments support a role for FAM129B in linking Wnt/ß-catenin signaling to apoptosis in melanoma.

18.
Mol Cell Biol ; 32(20): 4104-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22869526

RESUMEN

Deregulated developmental processes in the cerebellum cause medulloblastoma, the most common pediatric brain malignancy. About 25 to 30% of cases are caused by mutations increasing the activity of the Sonic hedgehog (Shh) pathway, a critical mitogen in cerebellar development. The proto-oncogene Smoothened (Smo) is a key transducer of the Shh pathway. Activating mutations in Smo that lead to constitutive activity of the Shh pathway have been identified in human medulloblastoma. To understand the developmental and oncogenic effects of two closely positioned point mutations in Smo, we characterized NeuroD2-SmoA2 mice and compared them to NeuroD2-SmoA1 mice. While both SmoA1 and SmoA2 transgenes cause medulloblastoma with similar frequencies and timing, SmoA2 mice have severe aberrations in cerebellar development, whereas SmoA1 mice are largely normal during development. Intriguingly, neurologic function, as measured by specific tests, is normal in the SmoA2 mice despite extensive cerebellar dysplasia. We demonstrate how two nearly contiguous point mutations in the same domain of the encoded Smo protein can produce striking phenotypic differences in cerebellar development and organization in mice.


Asunto(s)
Neoplasias Cerebelosas/genética , Cerebelo/anomalías , Modelos Animales de Enfermedad , Meduloblastoma/genética , Ratones , Receptores Acoplados a Proteínas G/genética , Animales , Humanos , Ratones Transgénicos , Mutación Puntual , Proto-Oncogenes Mas , Receptor Smoothened
19.
J Biomol Screen ; 17(10): 1316-28, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22786893

RESUMEN

Gene silencing by RNA interference has become a powerful tool to help identify genes that regulate biological processes. However, the complexity of the biology probed and the incomplete validation of the reagents used make it difficult to interpret the results of genome-wide siRNA screens. To address this challenge and maximize the return on the efforts required for validating genomic screen hits, the screening strategy must be designed to increase the robustness of the primary screening hits and include assays that inform on the mechanism of action of the knocked-down transcripts. Here, we describe the implementation of a small interfering RNA (siRNA) screen to identify genes that sensitize the effect of poly-(ADP ribose)-polymerase (PARP) inhibitor on cell survival. In the strategy we designed for the primary screen, two biological activities, apoptosis and cell viability, were measured simultaneously at different time points in the presence and absence of a PARP inhibitor (PARPi). The multiplexed assay allowed us to identify PARPi sensitizers induced by both caspase-dependent and independent mechanisms. The multiplexed screening strategy yielded robust primary hits with significant enrichment for DNA repair genes, which were further validated using relevant high-content imaging assays and confirmation of transcript knockdown by real-time PCR (rtPCR).


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Apoptosis/genética , División Celular/efectos de los fármacos , División Celular/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Reparación del ADN/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Interferencia de ARN/efectos de los fármacos , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
20.
Cancer Res ; 71(24): 7490-501, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22028325

RESUMEN

Thrombospondin-1 (TSP-1) is an endogenous inhibitor of angiogenesis encoded by the THBS1 gene, whose promoter is activated by p53. In advanced colorectal cancers (CRC), its expression is sustained or even slightly increased despite frequent loss of p53. Here, we determined that in HCT116 CRC cells, p53 activates the THBS1 primary transcript, but fails to boost THBS1 mRNA or protein levels, implying posttranscriptional regulation by microRNAs (miRNA). In a global miRNA gain-of-function screen done in the Dicer-deficient HCT116 variant, several miRNAs negatively regulated THBS1 mRNA and protein levels, one of them being miR-194. Notably, in agreement with published data, p53 upregulated miR-194 expression in THBS1 retrovirus-transduced HCT116 cells, leading to decreased TSP-1 levels. This negative effect was mediated by a single miR-194 complementary site in the THBS1 3'-untranslated region, and its elimination resulted in TSP-1 reactivation, impaired angiogenesis in Matrigel plugs, and reduced growth of HCT116 xenografts. Conversely, transient overexpression of miR-194 in HCT116/THBS1 cells boosted Matrigel angiogenesis, and its stable overexpression in Ras-induced murine colon carcinomas increased microvascular densities and vessel sizes. Although the overall contribution of miR-194 to neoplastic growth is context dependent, p53-induced activation of this GI tract-specific miRNA during ischemia could promote angiogenesis and facilitate tissue repair.


Asunto(s)
Neoplasias del Colon/genética , MicroARNs/genética , Neovascularización Patológica/genética , Trombospondina 1/genética , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 3'/genética , Animales , Western Blotting , Línea Celular Tumoral , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Ratones , MicroARNs/metabolismo , Mutación , Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trombospondina 1/metabolismo , Transcripción Genética , Transducción Genética , Trasplante Heterólogo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA