Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neurobiol Learn Mem ; 184: 107504, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425220

RESUMEN

The paradigm of fear conditioning is largely responsible for our current understanding of how memories are encoded at the cellular level. Its most fundamental underlying mechanism is considered to be plasticity of synaptic connections between excitatory projection neurons (PNs). However, recent studies suggest that while PNs execute critical memory functions, their activity at key stages of learning and recall is extensively orchestrated by a diverse array of GABAergic interneurons (INs). Here we review the contributions of genetically-defined INs to processing of threat-related stimuli in fear conditioning, with a particular focus on how synaptic interactions within interconnected networks of INs modulates PN activity through both inhibition and disinhibition. Furthermore, we discuss accumulating evidence that GABAergic microcircuits are an important locus for synaptic plasticity during fear learning and therefore a viable substrate for long-term memory. These findings suggest that further investigation of INs could unlock unique conceptual insights into the organization and function of fear memory networks.


Asunto(s)
Miedo/fisiología , Neuronas GABAérgicas/fisiología , Consolidación de la Memoria/fisiología , Animales , Miedo/psicología , Humanos , Vías Nerviosas
2.
Neurobiol Learn Mem ; 173: 107266, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512183

RESUMEN

Memory is a dynamic process that is continuously regulated by both synaptic and intrinsic neural mechanisms. While numerous studies have shown that synaptic plasticity is important in various types and phases of learning and memory, neuronal intrinsic excitability has received relatively less attention, especially regarding the dynamic nature of memory. In this review, we present evidence demonstrating the importance of intrinsic excitability in memory allocation, consolidation, and updating. We also consider the intricate interaction between intrinsic excitability and synaptic plasticity in shaping memory, supporting both memory stability and flexibility.


Asunto(s)
Encéfalo/fisiología , Consolidación de la Memoria/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Aprendizaje/fisiología
3.
J Neurosci ; 37(11): 2976-2985, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28193691

RESUMEN

A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network.SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations.


Asunto(s)
Envejecimiento/fisiología , Amígdala del Cerebelo/crecimiento & desarrollo , Neurogénesis/fisiología , Optogenética/métodos , Corteza Prefrontal/crecimiento & desarrollo , Sinapsis/fisiología , Envejecimiento/patología , Amígdala del Cerebelo/citología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Corteza Prefrontal/citología , Sinapsis/ultraestructura , Imagen de Colorante Sensible al Voltaje/métodos
4.
Learn Mem ; 24(11): 597-601, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29038221

RESUMEN

The α-1 adrenoreceptor antagonist prazosin has shown promise in the treatment of post-traumatic stress disorder (PTSD) symptoms, but its mechanisms are not well understood. Here we administered prazosin or placebo prior to threat conditioning (day 1) and tested subsequent extinction (day 2) and reextinction (day 3) in healthy human participants. Prazosin did not affect threat conditioning but augmented stimulus discrimination during extinction and reextinction, via lower responding to the safe stimulus. These results suggest that prazosin during threat acquisition may have influenced encoding or consolidation of safety processing in particular, subsequently leading to enhanced discrimination between the safe and threatening stimuli.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Discriminación en Psicología/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Memoria/efectos de los fármacos , Prazosina/farmacología , Adulto , Condicionamiento Clásico/efectos de los fármacos , Método Doble Ciego , Estimulación Eléctrica , Miedo/psicología , Femenino , Voluntarios Sanos , Humanos , Masculino , Factores de Tiempo , Adulto Joven
5.
J Neurosci ; 34(47): 15601-9, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25411488

RESUMEN

Conditioned fear requires neural activity in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), structures that are densely interconnected at the synaptic level. Previous work has suggested that anatomical subdivisions of mPFC make distinct contributions to fear expression and inhibition, and that the functional output of this processing is relayed to the BLA complex. However, it remains unknown whether synaptic plasticity in mPFC-BLA networks contributes to fear memory encoding. Here we use optogenetics and ex vivo electrophysiology to reveal the impact of fear conditioning on BLA excitatory and feedforward inhibitory circuits formed by projections from infralimbic (IL) and prelimbic (PL) cortices. In naive mice, these pathways recruit equivalent excitation and feedforward inhibition in BLA principal neurons. However, fear learning leads to a selective decrease in inhibition:excitation balance in PL circuits that is attributable to a postsynaptic increase in AMPA receptor function. These data suggest a pathway-specific mechanism for fear memory encoding by adjustment of mPFC-BLA transmission. Upon reengagement of PL by conditioned cues, these modifications may serve to amplify emotional responses.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Receptores AMPA/fisiología
6.
Nature ; 462(7276): 1065-9, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20010807

RESUMEN

The majority of excitatory synapses in the mammalian CNS (central nervous system) are formed on dendritic spines, and spine morphology and distribution are critical for synaptic transmission, synaptic integration and plasticity. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, and its holoreceptor components neuropilin-2 (Npn-2, also known as Nrp2) and plexin A3 (PlexA3, also known as Plxna3), exhibit increased dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and excitatory synapses in dissociated neurons in vitro, and in Npn-2(-/-) brain slices cortical layer V and DG GCs exhibit increased mEPSC (miniature excitatory postsynaptic current) frequency. In contrast, a distinct Sema3A-Npn-1/PlexA4 signalling cascade controls basal dendritic arborization in layer V cortical neurons, but does not influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 (also known as Nrp1) to all dendrites of cortical pyramidal neurons. Therefore, Sema3F signalling controls spine distribution along select dendritic processes, and distinct secreted semaphorin signalling events orchestrate CNS connectivity through the differential control of spine morphogenesis, synapse formation, and the elaboration of dendritic morphology.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Células Piramidales/citología , Células Piramidales/crecimiento & desarrollo , Semaforinas/metabolismo , Sinapsis/fisiología , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/ultraestructura , Proteínas Recombinantes/farmacología , Semaforinas/genética , Semaforinas/farmacología , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
7.
Learn Mem ; 21(7): 338-41, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24934333

RESUMEN

Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition. Participants who underwent extinction during reconsolidation showed no evidence of fear recovery, whereas fear responses returned in participants who underwent standard extinction. We observed this effect in young and old fear memories. Extending the beneficial use of reconsolidation to older fear memories in humans is promising for therapeutic applications.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Memoria/fisiología , Aprendizaje por Asociación/fisiología , Terapia Aversiva/métodos , Terapia Conductista , Señales (Psicología) , Voluntarios Sanos , Humanos , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/terapia , Factores de Tiempo
8.
J Neurosci ; 33(29): 11825-32, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23864672

RESUMEN

Amygdala excitatory synaptic strengthening is thought to contribute to both conditioned fear and anxiety. Thus, one basis for behavioral flexibility could allow these pathways to be weakened and corresponding emotion to be attenuated. However, synaptic depression within the context of amygdala-dependent behavior remains poorly understood. Previous work identified lateral amygdala (LA) calcium-permeable AMPA receptors (CP-AMPARs) as a key target for synaptic removal in long-term depression (LTD) and persistent fear attenuation. Here we demonstrate that LA neurons express two equally potent forms of LTD with contrasting requirements for protein kinase and phosphatase activity and differential impact on CP-AMPAR trafficking. Selective removal of CP-AMPARs from synapses is contingent on group 1 metabotropic glutamate receptor (mGluR1) and PKC signaling, in contrast to an alternate LTD pathway that nonselectively removes AMPARs and requires calcineurin (PP2b). Intriguingly, the balance between these forms of LTD is shifted by posttraining activation of ß-adrenergic receptors in fear conditioned mice, resulting in selective augmentation of mGluR-dependent depression. These results highlight the complexity of core mechanisms in LTD and suggest that norepinephrine exposure mediates a form of synaptic metaplasticity that recalibrates fear memory processing.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Miedo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Memoria/fisiología , Norepinefrina/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Calcineurina/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Miedo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Propranolol/farmacología , Proteína Quinasa C/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
9.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546717

RESUMEN

The rodent medial prefrontal cortex (mPFC) is a locus for both the promotion and suppression (e.g. extinction) of fear and is composed of four anatomically distinct subregions, including anterior cingulate 1 (Cg1), prelimbic (PL), infralimbic (IL), and the dorsal peduncular (DP) cortex. A vast majority of studies have focused on Cg1, PL, and IL. The Cg1 and PL have been implicated in the promotion of fear, while the IL has been linked to a role in the suppression, or extinction, of fear. Due to its anatomical location ventral to IL, the DP has been hypothesized to function as a fear-suppressing brain region however, no studies have explicitly tested its role in this function or in the regulation of memory generally. Moreover, some studies have pointed towards a dichotomous role for ventral mPFC in the dual suppression and promotion of fear, but the mechanisms underlying these opposing observations remains unclear. Here, we provide evidence that the DP paradoxically functions as a cued fear-encoding brain region and plays little to no role in fear memory extinction. By using a combination of cFos immunohistochemistry, whole-cell brain slice electrophysiology, fiber photometry, and activity-dependent neural tagging, we demonstrate that DP neurons exhibit learning-related plasticity, acquire cue-associated activity across learning and memory retrieval, and that DP neurons activated by learning are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of fear learning-related DP neural ensembles drives the promotion and suppression of freezing, respectively. Overall, these data suggest that the DP plays an unexpected role in fear memory encoding. More broadly, our results reveal new principles of organization across the dorsoventral axis of the mPFC.

10.
Cell Rep ; 43(4): 114097, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613783

RESUMEN

The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.


Asunto(s)
Miedo , Memoria , Corteza Prefrontal , Animales , Miedo/fisiología , Memoria/fisiología , Ratones , Corteza Prefrontal/fisiología , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Optogenética
11.
Neurobiol Aging ; 123: 92-97, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36652783

RESUMEN

With the prevalence of age-related cognitive deficits on the rise, it is essential to identify cellular and circuit alterations that contribute to age-related memory impairment. Increased intrinsic neuronal excitability after learning is important for memory consolidation, and changes to this process could underlie memory impairment in old age. Some studies find age-related deficits in hippocampal neuronal excitability that correlate with memory impairment but others do not, possibly due to selective changes only in activated neural ensembles. Thus, we tagged CA1 neurons activated during learning and recorded their intrinsic excitability 5 hours or 7 days post-training. Adult mice exhibited increased neuronal excitability 5 hours after learning, specifically in ensemble (learning-activated) CA1 neurons. As expected, ensemble excitability returned to baseline 7 days post-training. In aged mice, there was no ensemble-specific excitability increase after learning, which was associated with impaired hippocampal memory performance. These results suggest that CA1 may be susceptible to age-related impairments in post-learning ensemble excitability and underscore the need to selectively measure ensemble-specific changes in the brain.


Asunto(s)
Aprendizaje , Neuronas , Ratones , Animales , Neuronas/fisiología , Aprendizaje/fisiología , Hipocampo/fisiología , Encéfalo , Trastornos de la Memoria
12.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38077077

RESUMEN

Contextual associations are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the mechanisms underlying this competition remain largely enigmatic. Here we find the retrieval of contextual fear conditioning and extinction yield contrasting patterns of activity in prefrontal cortex and ventral hippocampus. Within ventral CA1, activation of somatostatin-expressing interneurons (SST-INs) occurs preferentially during extinction retrieval and correlates with differences in input synaptic transmission. Optogenetic manipulation of these cells but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in fear expression following extinction, and the ability of SST-INs to gate fear is specific to the context in which extinction was acquired. A similar pattern of results was obtained following reward-based extinction. These data show that ventral hippocampal SST-INs are critical for extinguishing prior associations and thereby gate relapse of both aversive and appetitive responses.

13.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187599

RESUMEN

The basolateral amygdala (BLA) projects to the frontal cortex (FC) in both rodents and primates, but the comparative organization of single-neuron BLA-FC projections is unknown. Using a barcoded connectomic approach, we found that BLA neurons are more likely to project to multiple distinct parts of FC in mice than in macaques. Further, while single BLA neuron projections to nucleus accumbens are similarly organized in mice and macaques, BLA-FC connections differ.

14.
bioRxiv ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711708

RESUMEN

The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.

15.
Neuron ; 111(20): 3307-3320.e5, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37857091

RESUMEN

Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.


Asunto(s)
Complejo Nuclear Basolateral , Animales , Complejo Nuclear Basolateral/fisiología , Macaca , Vías Nerviosas/fisiología , Lóbulo Frontal , Neuronas/fisiología , Corteza Prefrontal/fisiología
16.
J Neurosci ; 31(6): 2188-96, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307255

RESUMEN

Homeostatic synaptic scaling calibrates neuronal excitability by adjusting synaptic strengths during prolonged changes in synaptic activity. The molecular mechanisms that regulate the trafficking of AMPA receptors (AMPARs) during synaptic scaling are largely unknown. Here, we show that chronic activity blockade reduces PICK1 protein level on a time scale that coincides with the accumulation of surface AMPARs. PICK1 loss of function alters the subunit composition and the abundance of GluA2-containing AMPARs. Due to aberrant trafficking of these receptors, the increase in synaptic strength in response to synaptic inactivity is occluded in neurons generated from PICK1 knock-out mouse. In agreement with electrophysiological recordings, no defect of AMPAR trafficking is observed in PICK1 knock-out neurons in response to elevated neuronal activity. Overall, our data reveal an important role of PICK1 in inactivity-induced synaptic scaling by regulating the subunit composition, abundance, and trafficking of GluA2-containing AMPARs.


Asunto(s)
Homeostasis/fisiología , Neuronas/citología , Proteínas Nucleares/deficiencia , Sinapsis/metabolismo , Animales , Bicuculina/farmacología , Biotinilación/métodos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Antagonistas de Receptores de GABA-A/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Homeostasis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/farmacología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Estadísticas no Paramétricas , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología , Transfección/métodos
17.
Neuron ; 110(18): 3036-3052.e5, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35944526

RESUMEN

Neurons activated by learning have been ascribed the unique potential to encode memory, but the functional contribution of discrete cell types remains poorly understood. In particular, it is unclear whether learning engages specific GABAergic interneurons and, if so, whether they differ functionally from interneurons recruited by other experiences. Here, we show that fear conditioning activates a heterogeneous neuronal population in the medial prefrontal cortex (mPFC) that is largely comprised of somatostatin-expressing interneurons (SST-INs). Using intersectional genetic approaches, we demonstrate that fear-learning-activated SST-INs exhibit distinct circuit properties and are selectively reactivated to mediate cue-evoked memory expression. In contrast, an orthogonal population of SST-INs activated by morphine experience exerts opposing control over fear and supports reward-like motivational effects. These results outline an important role for discrete subsets of GABAergic cells in emotional learning and point to an unappreciated capacity for functional specialization among SST-INs.


Asunto(s)
Miedo , Interneuronas , Miedo/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Morfina/metabolismo , Neuronas/fisiología , Corteza Prefrontal/fisiología , Somatostatina/metabolismo
18.
J Neurosci ; 30(18): 6360-6, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20445062

RESUMEN

While AMPA-type glutamate receptors (AMPARs) found at principal neuron excitatory synapses typically contain the GluR2 subunit, several forms of behavioral experience have been linked to the de novo synaptic insertion of calcium-permeable (CP) AMPARs, defined by their lack of GluR2. In particular, whisker experience drives synaptic potentiation as well as the incorporation of CP-AMPARs in the neocortex. Previous studies implicate PICK1 (protein interacting with C kinase-1) in activity-dependent internalization of GluR2, suggesting one potential mechanism leading to the subsequent accumulation of synaptic CP-AMPARs and increased synaptic strength. Here we test this hypothesis by using a whisker stimulation paradigm in PICK1 knock-out mice. We demonstrate that PICK1 facilitates the surface expression of CP-AMPARs and is indispensable for their experience-dependent synaptic insertion. However, the failure to incorporate CP-AMPARs in PICK1 knock-outs does not preclude sensory-induced enhancement of synaptic currents. Our results indicate that synaptic strengthening in the early postnatal cortex does not require PICK1 or the addition of GluR2-lacking AMPARs. Instead, PICK1 permits changes in AMPAR subunit composition to occur in conjunction with synaptic potentiation.


Asunto(s)
Calcio/metabolismo , Proteínas Portadoras/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Proteínas Nucleares/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Corteza Cerebral/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Nucleares/genética , Receptores Sensibles al Calcio/metabolismo , Sinapsis/metabolismo , Potenciales Sinápticos/genética
19.
Sci Rep ; 11(1): 22638, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811442

RESUMEN

Behaviors central to the procurement and consumption of food are among those most fundamental to survival, but their inappropriate expression can lead to overeating and obesity. Nevertheless, we have a poor understanding of circuits that promote feeding independent of physiological demand. Here we demonstrate that activation of basal forebrain (BF) GABAergic neurons results in consumption of food as well as non-food items in well-fed mice, and performance of fictive eating in the absence of ingestible materials. In addition, stimulation of these cells disrupts defensive threat responses and elicits reward-like motivational effects. Finally, BF GABAergic activity triggers skilled predatory attacks of live prey and prey-like objects, but not social targets. These effects were entirely recapitulated by selective stimulation of BF GABAergic projections to the periaqueductal gray (PAG). Our results outline a potent circuit mechanism for increased feeding through recruitment of distinct but synergistic behaviors, and add to growing evidence that PAG is an important integrator of feeding-related activity.


Asunto(s)
Prosencéfalo Basal/metabolismo , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Animales , Conducta Animal , Mapeo Encefálico , Condicionamiento Operante , Miedo , Femenino , Masculino , Ratones , Ratones Transgénicos , Motivación , Vías Nerviosas/fisiología , Neurociencias , Sustancia Gris Periacueductal/fisiología , Conducta Predatoria/fisiología , Recompensa
20.
Neuron ; 49(5): 663-70, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-16504942

RESUMEN

An accumulating body of evidence supports the notion that trafficking of AMPA receptors (AMPARs) underlies strengthening of glutamatergic synapses and, in turn, learning and memory in the behaving animal. However, without exception, these experiments have been performed using artificial stimulation protocols, cultured neurons, or viral-overexpression systems that can significantly alter the normal function of AMPARs. Using a single-whisker experience protocol that significantly enhances neuronal responses in vivo, we have targeted neurons in and around the spared whisker column of fosGFP transgenic mice for whole-cell recording. Here we show that in vivo experience induces the pathway-specific strengthening of neocortical excitatory synapses. By assaying AMPARs for rectification and sensitivity to joro spider toxin, we find that in vivo experience induces the delivery of native GluR2-lacking receptors at spared, but not deprived, inputs. These data demonstrate that pathway-specific trafficking of GluR2-lacking AMPARs is a normal feature of synaptic strengthening that underlies experience-dependent plasticity in the behaving animal.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/fisiología , Receptores AMPA/metabolismo , Vibrisas/inervación , Análisis de Varianza , Animales , Animales Recién Nacidos , Calcio/metabolismo , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neocórtex/citología , Proteínas Oncogénicas v-fos/metabolismo , Técnicas de Placa-Clamp/métodos , Transporte de Proteínas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsis/efectos de la radiación , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA