RESUMEN
Recurrent vulvovaginal candidiasis (RVVC) is a widespread chronic infection that has a substantial negative impact on work and quality of life. The development of antimicrobial resistance and biofilm formation are speculated to contribute to Candida pathogenicity and treatment ineffectiveness. Designed antimicrobial peptides (dAMPs) are chemically modified from endogenous antimicrobial peptides that provide the first line of defense against pathogens. The goal here is to identify a dAMP for the topical treatment of RVVC. The dAMP MICs were determined for 46 fluconazole-susceptible and fluconazole-resistant Candida spp. clinical isolates. The possibility of inducing dAMP drug resistance and comparison of dAMP and fluconazole activity against preformed Candida biofilm and biofilm formation were evaluated. Assessment of mammalian cell viability was determined using bioluminescent human keratinocytes. The dAMP effect on fungus was probed via scanning electron microscopy, and topically applied dAMP activity was evaluated in a rodent vulvovaginal candidiasis (VVC) infection model. dAMPs demonstrated broad-spectrum antimicrobial activity against common causative clinical Candida isolates, reduced preformed biofilm, and inhibited biofilm formation. An evaluated dAMP did not induce resistance after repeated exposure of Candida tropicalis The dAMPs were selective for Candida cells with limited mammalian cytotoxicity with substantial activity in a rodent VVC model. dAMPs are described as having potent antifungal and antibiofilm activity, likely direct membrane action with selectivity for Candida cells, with limited resistance development. Combined with activity in a rodent VVC model, the data support clinical evaluation of dAMPs for topical treatment of VCC and recurrent VVC infections.
Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Péptidos/farmacología , Animales , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Femenino , Fluconazol/farmacología , Humanos , Queratinocitos/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Ratas , Ratas WistarRESUMEN
Acne vulgaris, caused by the Gram-positive bacterium Cutibacterium acnes, is a prevalent dermatologic condition with substantial cutaneous and psychological morbidity. Mild acne is treated with topical antibiotics with more severe inflammatory forms requiring the prolonged use of oral antibiotics, resulting in antimicrobial resistance development. Innovative treatment alternatives, providing complete microbicidal eradication with minimal safety issues and limited susceptibility to microbial resistance, are fervently sought. Designed antimicrobial peptides (dAMPs) are engineered analogs of naturally occurring AMPs that possess a reduced likelihood of developing bacterial resistance. Seven novel dAMP sequences were screened for in vitro bactericidal effectiveness against antibiotic resistant C. acnes clinical isolates. Five peptides (RP444, RP551, RP554, RP556, and RP557) exhibited potent in vitro antibacterial activity. The Therapeutic Index, a measure of specificity for killing multidrug resistant C. acnes over mammalian cells, was determined using bioluminescent human keratinocytes. The Therapeutic Index was highest for the disulfide dAMP, RP556, with a value of 130. The lead dAMP candidate RP556, was further evaluated in a multidrug-resistant C. acnes intradermal murine infection model. A topical application of 5 mg/mL RP556 (0.5%) eliminated infection. If these preclinical results are translated clinically, dAMPs may become a viable topical monotherapy for the treatment of recalcitrant acne infections.
RESUMEN
Cutaneous invasive fungal wound infections after life-threatening dismounted complex blast injury (DCBI) and natural disasters complicate clinical care. These wounds often require aggressive repeated surgical debridement, can result in amputations and hemipelvectomies and have a 38% mortality rate. Given the substantial morbidity associated with cutaneous fungal wound infections, patients at risk need immediate empiric treatment mandating the use of rapidly acting broad-spectrum antimicrobials, acting on both fungi and bacteria, that are also effective against biofilm and can be administered topically. Designed antimicrobial peptides (dAMPs) are engineered analogues of innate antimicrobial peptides which provide the first line of defense against invading pathogens. The antifungal and antibacterial effect and mammalian cytotoxicity of seven innovative dAMPs, created by iterative structural analog revisions and physicochemical and functional testing were investigated. The dAMPs possess broad-spectrum antifungal activity, in addition to being effective against Gram-negative and Gram-positive bacteria, which is crucial as many wounds are polymicrobial and require immediate empiric treatment. Three of the most potent dAMPs-RP504, RP556 and RP557-possess limited mammalian cytotoxicity following 8 h incubation. If these encouraging broad-spectrum antimicrobial and rapid acting results are translated clinically, these novel dAMPs may become a first line empiric topical treatment for traumatic wound injuries.
RESUMEN
The relentless growth of multidrug resistance and generation of recalcitrant biofilm are major obstacles in treating wounds, particularly in austere military environments where broad-spectrum pathogen coverage is needed. Designed antimicrobial peptides (dAMPs) are constructed analogs of naturally occurring AMPs that provide the first line of defense in many organisms. RP557 is a dAMP resulting from iterative rational chemical structural analoging with endogenous AMPs, human cathelicidin LL-37 and Tachyplesin 1 and the synthetic D2A21 used as structural benchmarks. RP557 possesses broad spectrum activity against Gram-positive and Gram-negative bacteria and fungi, including recalcitrant biofilm with substantial selective killing over bacterial cells compared to mammalian cells. RP557 did not induce resistance following chronic passages of Pseudomonas aeruginosa and Staphylococcus aureus at subinhibitory concentrations, whereas concurrently run conventional antibiotics, gentamycin, and clindamycin, did. Furthermore, RP557 was able to subsequently eliminate the generated gentamycin resistant P. aeruginosa and clindamycin resistant S. aureus strains without requiring an increase in minimum inhibitory concentration (MIC) concentrations. RP557 was evaluated further in a MRSA murine wound abrasion infection model with a topical application of 0.2% RP557, completely eliminating infection. If these preclinical results are translated into the clinical setting, RP557 may become crucial for the empirical broad-spectrum treatment of wound pathogens, so that infections can be reduced to a preventable complication of combat-related injuries.
RESUMEN
Halofenate has been shown previously to lower triglycerides in dyslipidemic subjects. In addition, significant decreases in fasting plasma glucose were observed but only in type 2 diabetic patients. We hypothesized that halofenate might be an insulin sensitizer, and we present data to suggest that halofenate is a selective peroxisome proliferator-activated receptor (PPAR)-gamma modulator (SPPARgammaM). We demonstrate that the circulating form of halofenate, halofenic acid (HA), binds to and selectively modulates PPAR-gamma. Reporter assays show that HA is a partial PPAR-gamma agonist, which can antagonize the activity of the full agonist rosiglitazone. The data suggest that the partial agonism of HA may be explained in part by effective displacement of corepressors (N-CoR and SMRT) coupled with inefficient recruitment of coactivators (p300, CBP, and TRAP 220). In human preadipocytes, HA displays weak adipogenic activity and antagonizes rosiglitazone-mediated adipogenic differentiation. Moreover, in 3T3-L1 adipocytes, HA selectively modulates the expression of multiple PPAR-gamma-responsive genes. Studies in the diabetic ob/ob mouse demonstrate halofenate's acute antidiabetic properties. Longer-term studies in the obese Zucker (fa/fa) rat demonstrate halofenate's comparable insulin sensitization to rosiglitazone in the absence of body weight increases. Our data establish halofenate as a novel SPPARgammaM with promising therapeutic utility with the potential for less weight gain.
Asunto(s)
Halofenato/farmacología , Hipoglucemiantes/uso terapéutico , PPAR gamma/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Diabetes Mellitus/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Resistencia a la Insulina , Ligandos , Ratones , Ratones Obesos , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Estructura Terciaria de Proteína , Ratas , Ratas Zucker , Rosiglitazona , Tiazolidinedionas/farmacología , Técnicas del Sistema de Dos HíbridosRESUMEN
Purpose: To limit corneal damage and potential loss of vision, bacterial keratitis must be treated aggressively. Innovation in antimicrobials is required due to the need for empirical treatment and the rapid emergence of bacterial resistance. Designed host defense peptides (dHDPs) are synthetic analogues of naturally occurring HDPs, which provide defense against invading pathogens. This study investigates the use of novel dHDPs for the treatment of bacterial keratitis. Methods: The minimum inhibitory concentrations (MICs) were determined for dHDPs on both Gram-positive and -negative bacteria. The minimum biofilm eradication concentrations (MBEC) and in vitro time-kill assays were determined. The most active dHDP, RP444, was evaluated for propensity to induce drug resistance and therapeutic benefit in a murine Pseudomonas aeruginosa keratitis model. Results: Designed HDPs were bactericidal with MICs ranging from 2 to >64 µg/mL and MBEC ranging from 6 to 750 µg/mL. In time-kill assays, dHDPs were able to rapidly reduce bacterial counts upon contact with as little as 2 µg/mL. RP444 did not induce resistance after repeated exposure of P. aeruginosa to subinhibitory concentrations. RP444 demonstrated significant efficacy in a murine model of bacterial keratitis as evidenced by a significant dose-dependent decrease in ocular clinical scores, a significantly reduced bacterial load, and substantially decreased inflammatory cell infiltrates. Conclusions: Innovative dHDPs demonstrated potent antimicrobial activity, possess a limited potential for development of resistance, and reduced the severity of murine P. aeruginosa keratitis. These studies demonstrate that a novel dHDP may have potential to treat patients with sight-threatening bacterial keratitis.
Asunto(s)
Biopelículas/efectos de los fármacos , Córnea/microbiología , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Compuestos de Organotecnecio/administración & dosificación , Péptidos Cíclicos/administración & dosificación , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/aislamiento & purificación , Animales , Medio de Cultivo Libre de Suero , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Infecciones Bacterianas del Ojo/microbiología , Queratitis/microbiología , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacosRESUMEN
MBX-102/JNJ-39659100 (MBX-102) is a selective, partial PPAR-γ agonist that lowers glucose in the absence of some of the side effects, such as weight gain and edema, that are observed with the TZDs. Interestingly MBX-102 also displays pronounced triglyceride lowering in preclinical rodent models and in humans. Although in vitro reporter gene studies indicated that MBX-102 acid is a highly selective PPAR-γ agonist that lacks PPAR-α activity, we sought to determine if PPAR-α activation in vivo could possibly contribute to the triglyceride lowering abilities of MBX-102. In vivo studies using ZDF and ZF rats demonstrated that MBX-102 lowered plasma triglycerides. However in ZF rats, MBX-102 had no effect on liver weight or on hepatic expression levels of PPAR-α target genes. Further in vitro studies in primary human hepatocytes supported these findings. Finally, the ability of MBX-102 to lower triglycerides was maintained in PPAR-α knockout mice, unambiguously establishing that the triglyceride lowering effect of MBX-102 is PPAR-α independent. The in vivo lipid lowering abilities of MBX-102 are therefore mediated by an alternate mechanism which is yet to be determined.
RESUMEN
MBX-102/JNJ39659100 (MBX-102) is in clinical development as an oral glucose-lowering agent for the treatment of type 2 diabetes. MBX-102 is a nonthiazolidinedione (TZD) selective partial agonist of peroxisome proliferator-activated receptor (PPAR)-gamma that is differentiated from the TZDs structurally, mechanistically, preclinically and clinically. In diabetic rodent models, MBX-102 has insulin-sensitizing and glucose-lowering properties comparable to TZDs without dose-dependent increases in body weight. In vitro, in contrast with full PPAR-gamma agonist treatment, MBX-102 fails to drive human and murine adipocyte differentiation and selectively modulates the expression of a subset of PPAR-gamma target genes in mature adipocytes. Moreover, MBX-102 does not inhibit osteoblastogenesis of murine mesenchymal cells. Compared with full PPAR-gamma agonists, MBX-102 displays differential interactions with the PPAR-gamma ligand binding domain and possesses reduced ability to recruit coactivators. Interestingly, in primary mouse macrophages, MBX-102 displays enhanced antiinflammatory properties compared with other PPAR-gamma or alpha/gamma agonists, suggesting that MBX-102 has more potent transrepression activity. In summary, MBX-102 is a selective PPAR-gamma modulator with weak transactivation but robust transrepression activity. MBX-102 exhibits full therapeutic activity without the classical PPAR-gamma side effects and may represent the next generation insulin sensitizer.