Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
J Cell Sci ; 126(Pt 4): 953-65, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23264740

RESUMEN

In fibroblasts, platelet-derived growth factor receptor alpha (PDGFRα) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 pathways leading to the activation of the Na(+)/H(+) exchanger, NHE1, cytoplasmic alkalinization and actin nucleation at the lamellipodium that supports directional cell migration. We here show that AKT and MEK1/2-ERK1/2-p90(RSK) inhibition reduced PDGF-AA-induced cell migration by distinct mechanisms: AKT inhibition reduced NHE1 activity by blocking the translocation of NHE1 to the cell membrane. MEK1/2 inhibition did not affect NHE1 activity but influenced NHE1 localization, causing NHE1 to localize discontinuously in patches along the plasma membrane, rather than preferentially at the lamellipodium. We also provide direct evidence of NHE1 translocation through the cytoplasm to the leading edge. In conclusion, signals initiated at the primary cilium through the PDGFRαα cascade reorganize the cytoskeleton to regulate cell migration differentially through the AKT and the MEK1/2-ERK1/2-p90(RSK) pathways. The AKT pathway is necessary for initiation of NHE1 translocation, presumably in vesicles, to the leading edge and for its activation. In contrast, the MEK1/2-ERK1/2-p90(RSK) pathway controls the spatial organization of NHE1 translocation and incorporation, and therefore specifies the direction of the leading edge formation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Movimiento Celular/fisiología , Cilios/metabolismo , Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Western Blotting , Proteínas de Transporte de Catión/genética , Movimiento Celular/genética , Electroforesis en Gel de Poliacrilamida , Fibroblastos/citología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Proteínas Proto-Oncogénicas c-akt/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Intercambiador 1 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética
3.
Sci Adv ; 9(28): eadg4055, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436979

RESUMEN

Generation of functionally mature organs requires exquisite control of transcriptional programs governing cell state transitions during development. Despite advances in understanding the behavior of adult intestinal stem cells and their progeny, the transcriptional regulators that control the emergence of the mature intestinal phenotype remain largely unknown. Using mouse fetal and adult small intestinal organoids, we uncover transcriptional differences between the fetal and adult state and identify rare adult-like cells present in fetal organoids. This suggests that fetal organoids have an inherent potential to mature, which is locked by a regulatory program. By implementing a CRISPR-Cas9 screen targeting transcriptional regulators expressed in fetal organoids, we establish Smarca4 and Smarcc1 as important factors safeguarding the immature progenitor state. Our approach demonstrates the utility of organoid models in the identification of factors regulating cell fate and state transitions during tissue maturation and reveals that SMARCA4 and SMARCC1 prevent precocious differentiation during intestinal development.


Asunto(s)
Células Madre Adultas , Sistemas CRISPR-Cas , Animales , Ratones , Diferenciación Celular/genética , Feto , Organoides
4.
Nat Cell Biol ; 21(8): 924-932, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358966

RESUMEN

The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction.


Asunto(s)
Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/inmunología , Homeostasis/fisiología , Células Madre/citología , Animales , Progresión de la Enfermedad , Ratones Transgénicos
5.
Sci Rep ; 8(1): 15255, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323305

RESUMEN

The processes involved in renewal of the epithelium that lines the mouse stomach remain unclear. Apart from the cells in the isthmus, several other populations located deeper in the gastric glands have been suggested to contribute to the maintenance of the gastric epithelium. Here, we reveal that Lrig1 is expressed in the basal layer of the forestomach and the lower part of glands in the corpus and pylorus. In the glandular epithelium of the stomach, Lrig1 marks a heterogeneous population comprising mainly non-proliferative cells. Yet, fate-mapping experiments using a knock-in mouse line expressing Cre specifically in Lrig1+ cells demonstrate that these cells are able to contribute to the long-term maintenance of the gastric epithelium. Moreover, when cultured in vitro, cells expressing high level of Lrig1 have much higher organoid forming potential than the corresponding cellular populations expressing lower levels of Lrig1. Taken together, these observations show that Lrig1 is expressed primarily by differentiated cells, but that these cells can be recruited to contribute to the maintenance of the gastric epithelium. This confirms previous observations that cells located in the lower segments of gastric glands can participate in tissue replenishment.


Asunto(s)
Biomarcadores , Proliferación Celular , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Biomarcadores/metabolismo , Desdiferenciación Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/fisiología , Mucosa Gástrica/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estómago/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA