Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 37(Database issue): D603-10, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18953024

RESUMEN

The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.


Asunto(s)
Bases de Datos Factuales , Metaboloma , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Redes y Vías Metabólicas , Interfaz Usuario-Computador
2.
Anal Chem ; 81(10): 4130-6, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19382773

RESUMEN

Most of the world's remaining petroleum resource has been altered by in-reservoir biodegradation which adversely impacts oil quality and production, ultimately making heavy oil. Analysis of the microorganisms in produced reservoir fluid samples is a route to characterization of subsurface biomes and a better understanding of the resident and living microorganisms in petroleum reservoirs. The major challenges of sample contamination with surface biota, low abundances of microorganisms in subsurface samples, and viscous emulsions produced from biodegraded heavy oil reservoirs are addressed here in a new analytical method for intact polar lipids (IPL) as taxonomic indicators in petroleum reservoirs. We have evaluated the extent to which microbial cells are removed from the free water phase during reservoir fluid phase separation by analysis of model reservoir fluids spiked with microbial cells and have used the resultant methodologies to analyze natural well-head fluids from the Western Canada Sedimentary Basin (WCSB). Analysis of intact polar membrane lipids of microorganisms using liquid chromatography-mass spectrometry (LC-MS) techniques revealed that more than half of the total number of microorganisms can be recovered from oil-water mixtures. A newly developed oil/water separator allowed for filtering of large volumes of water quickly while in the field, which reduced the chances of contamination and alterations to the composition of the subsurface microbial community after sample collection. This method makes the analysis of IPLs (or indirectly microorganisms) from well-head fluids collected in remote field settings possible and reliable. To the best of our knowledge this is the first time that IPLs have been detected in well-head oil-water mixtures.


Asunto(s)
Bacterias/aislamiento & purificación , Lípidos/química , Petróleo , Microbiología del Agua , Agua/química , Biodegradación Ambiental , Cromatografía Liquida , Ecosistema , Lípidos/aislamiento & purificación , Técnicas Microbiológicas , Transición de Fase , Espectrometría de Masa por Ionización de Electrospray
3.
Nucleic Acids Res ; 35(Database issue): D521-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17202168

RESUMEN

The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at: www.hmdb.ca.


Asunto(s)
Bases de Datos Factuales , Metabolismo , Bases de Datos Factuales/normas , Humanos , Internet , Espectrometría de Masas , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas , Resonancia Magnética Nuclear Biomolecular , Control de Calidad , Interfaz Usuario-Computador
4.
Anal Chim Acta ; 685(1): 36-44, 2011 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-21168549

RESUMEN

One of the challenges in metabolomic profiling of complex biological samples is to identify new and unknown compounds. Typically, standards are used to help identify metabolites, yet standards cannot be purchased or readily synthesized for many unknowns. In this work we present a strategy of using human liver microsomes (HLM) to metabolize known endogenous human metabolites (substrates), producing potentially new metabolites that have yet to be documented. The metabolites produced by HLM can be tentatively identified based on the associated substrate structure, known metabolic processes, tandem mass spectrometry (MS/MS) fragmentation patterns and, if necessary, accurate mass measurements. Once identified, these metabolites can be used as references for identification of the same compounds in complex biological samples. As a proof of principle, a total of 9 metabolites have been identified from individual HLM incubations using 5 different substrates. Each metabolite was used as a standard. In the analysis of human urine sample by liquid chromatography MS/MS, four spectral matches were found from the 9 microsome-produced metabolite standards. Two of them have previously been documented as endogenous human metabolites, the third is an isomer of a microsome-metabolite and the fourth compound has not been previously reported and is also an isomer of a microsome-metabolite. This work illustrates the feasibility of using microsome-based metabolism to produce metabolites of endogenous human metabolites that can be used to facilitate the identification of unknowns in biological samples. Future work on improving the performance of this strategy is also discussed.


Asunto(s)
Metabolómica/métodos , Microsomas Hepáticos/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Humanos , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA