Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 573(7772): 61-68, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435019

RESUMEN

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Asunto(s)
Astrocitos/clasificación , Evolución Biológica , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/clasificación , Adolescente , Adulto , Anciano , Animales , Astrocitos/citología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Inhibición Neural , Neuronas/citología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma/genética , Adulto Joven
2.
Proc Natl Acad Sci U S A ; 117(16): 9064-9073, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32273388

RESUMEN

The invasive behavior of glioblastoma is essential to its aggressive potential. Here, we show that pleckstrin homology domain interacting protein (PHIP), acting through effects on the force transduction layer of the focal adhesion complex, drives glioblastoma motility and invasion. Immunofluorescence analysis localized PHIP to the leading edge of glioblastoma cells, together with several focal adhesion proteins: vinculin (VCL), talin 1 (TLN1), integrin beta 1 (ITGB1), as well as phosphorylated forms of paxillin (pPXN) and focal adhesion kinase (pFAK). Confocal microscopy specifically localized PHIP to the force transduction layer, together with TLN1 and VCL. Immunoprecipitation revealed a physical interaction between PHIP and VCL. Targeted suppression of PHIP resulted in significant down-regulation of these focal adhesion proteins, along with zyxin (ZYX), and produced profoundly disorganized stress fibers. Live-cell imaging of glioblastoma cells overexpressing a ZYX-GFP construct demonstrated a role for PHIP in regulating focal adhesion dynamics. PHIP silencing significantly suppressed the migratory and invasive capacity of glioblastoma cells, partially restored following TLN1 or ZYX cDNA overexpression. PHIP knockdown produced substantial suppression of tumor growth upon intracranial implantation, as well as significantly reduced microvessel density and secreted VEGF levels. PHIP copy number was elevated in the classical glioblastoma subtype and correlated with elevated EGFR levels. These results demonstrate PHIP's role in regulating the actin cytoskeleton, focal adhesion dynamics, and tumor cell motility, and identify PHIP as a key driver of glioblastoma migration and invasion.


Asunto(s)
Neoplasias Encefálicas/patología , Adhesiones Focales/patología , Glioblastoma/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Patológica/patología , Citoesqueleto de Actina/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/genética , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microscopía Intravital , Ratones , Microscopía Confocal , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neovascularización Patológica/genética , Imagen de Lapso de Tiempo , Vinculina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Lab Invest ; 102(7): 711-721, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35013528

RESUMEN

Glioblastoma (GBM) is still one of the most commonly diagnosed advanced stage primary brain tumors. Current treatments for patients with primary GBM (pGBM) are often not effective and a significant proportion of the patients with pGBM recur. The effective treatment options for recurrent GBM (rGBM) are limited and survival outcomes are poor. This retrospective multicenter pilot study aims to determine potential cell-free microRNAs (cfmiRs) that identify patients with pGBM and rGBM tumors. 2,083 miRs were assessed using the HTG miRNA whole transcriptome assay (WTA). CfmiRs detection was compared in pre-operative plasma samples from patients with pGBM (n = 32) and rGBM (n = 13) to control plasma samples from normal healthy donors (n = 73). 265 cfmiRs were found differentially expressed in plasma samples from pGBM patients compared to normal healthy donors (FDR < 0.05). Of those 193 miRs were also detected in pGBM tumor tissues (n = 15). Additionally, we found 179 cfmiRs differentially expressed in rGBM, of which 68 cfmiRs were commonly differentially expressed in pGBM. Using Random Forest algorithm, specific cfmiR classifiers were found in the plasma of pGBM, rGBM, and both pGBM and rGBM combined. Two common cfmiR classifiers, miR-3180-3p and miR-5739, were found in all the comparisons. In receiving operating characteristic (ROC) curves analysis for rGBM miR-3180-3p showed a specificity of 87.7% and a sensitivity of 100% (AUC = 98.5%); while miR-5739 had a specificity of 79.5% and sensitivity of 92.3% (AUC = 90.2%). This study demonstrated that plasma samples from pGBM and rGBM patients have specific miR signatures. CfmiR-3180-3p and cfmiR-5739 have potential utility in diagnosing patients with pGBM and rGBM tumors using a minimally invasive blood assay.


Asunto(s)
Neoplasias Encefálicas , MicroARN Circulante , Glioblastoma , MicroARNs , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , MicroARNs/genética , Proyectos Piloto , Transcriptoma
4.
Biochim Biophys Acta Rev Cancer ; 1868(1): 273-276, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28554666

RESUMEN

The presence of human cytomegalovirus (HCMV) and glioblastoma multiforme (GBM), first established in 2002, has developed into an area of considerable interest and controversy. Numerous studies have found evidence of possible HCMV infection of GBM tumor cells as well as myriad onco- and immunomodulatory properties exhibited by HCMV antigens and transcripts, while recent reports have failed to detect HCMV particles in GBM and question the virus' role in tumor progression. This review highlights the known immunomodulatory properties of HCMV, independent of GBM infection status, that help drive the virus from peripheral blood into the vital tissues and subsequently dampen local immune response, assisting GBM tumors in evading immune surveillance and contributing to the disease's poor prognosis. Emerging antiviral approaches to treating GBM, including antiviral drugs and immunotherapies directed against HCMV, are also examined.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Citomegalovirus/inmunología , Glioblastoma/inmunología , Glioblastoma/patología , Inmunomodulación/inmunología , Neoplasias Encefálicas/virología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/virología , Progresión de la Enfermedad , Glioblastoma/virología , Humanos
5.
J Transl Med ; 16(1): 142, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843811

RESUMEN

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Glioblastoma/inmunología , Glioblastoma/terapia , Adulto , Anciano , Neoplasias Encefálicas/diagnóstico , Vacunas contra el Cáncer/efectos adversos , Determinación de Punto Final , Femenino , Glioblastoma/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
6.
J Transl Med ; 16(1): 179, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29958537

RESUMEN

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

7.
J Neurooncol ; 136(1): 181-188, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29098571

RESUMEN

Appropriate management of adult gliomas requires an accurate histopathological diagnosis. However, the heterogeneity of gliomas can lead to misdiagnosis and undergrading, especially with biopsy. We evaluated the role of preoperative relative cerebral blood volume (rCBV) analysis in conjunction with histopathological analysis as a predictor of overall survival and risk of undergrading. We retrospectively identified 146 patients with newly diagnosed gliomas (WHO grade II-IV) that had undergone preoperative MRI with rCBV analysis. We compared overall survival by histopathologically determined WHO tumor grade and by rCBV using Kaplan-Meier survival curves and the Cox proportional hazards model. We also compared preoperative imaging findings and initial histopathological diagnosis in 13 patients who underwent biopsy followed by subsequent resection. Survival curves by WHO grade and rCBV tier similarly separated patients into low, intermediate, and high-risk groups with shorter survival corresponding to higher grade or rCBV tier. The hazard ratio for WHO grade III versus II was 3.91 (p = 0.018) and for grade IV versus II was 11.26 (p < 0.0001) and the hazard ratio for each increase in 1.0 rCBV units was 1.12 (p < 0.002). Additionally, 3 of 13 (23%) patients initially diagnosed by biopsy were upgraded on subsequent resection. Preoperative rCBV was elevated at least one standard deviation above the mean in the 3 upgraded patients, suggestive of undergrading, but not in the ten concordant diagnoses. In conclusion, rCBV can predict overall survival similarly to pathologically determined WHO grade in patients with gliomas. Discordant rCBV analysis and histopathology may help identify patients at higher risk for undergrading.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Volumen Sanguíneo Cerebral , Glioma/irrigación sanguínea , Adulto , Anciano , Biopsia , Determinación del Volumen Sanguíneo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Femenino , Glioma/diagnóstico , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Periodo Preoperatorio , Factores de Riesgo
8.
Stem Cells ; 34(9): 2276-89, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27354342

RESUMEN

Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date, no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations, justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry, here we present five cell-surface markers HMOX1, SLC16A1, CADM1, SCAMP3, and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM, substantiating the histopathological hallmarks of GBM. In a prospective study (N = 8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness, we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFß. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition, surgical resection of GBM tumors caused declines (18% ± 5.1SEM) in the level of plasma HMOX1 as measured by ELISA, in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Hemo-Oxigenasa 1/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Crecimiento Transformador beta/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Autorrenovación de las Células , Glioblastoma/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Invasividad Neoplásica , Células-Madre Neurales/metabolismo , Pronóstico , Esferoides Celulares/metabolismo , Simportadores/metabolismo
9.
J Neurooncol ; 133(2): 257-264, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28434113

RESUMEN

Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30-70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.


Asunto(s)
Radiación Electromagnética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioma/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Receptores ErbB/genética , Glioma/genética , Humanos , Antígeno Ki-67/metabolismo , Interferencia de ARN/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
10.
Biochim Biophys Acta ; 1846(1): 113-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24657728

RESUMEN

Glioblastoma is a malignant brain tumor of glial origin. These tumors are thought to be derived from astrocytic cells that undergo malignant transformation. A growing body of evidence suggests that upregulation of MMP expression plays a significant role in promoting glioma pathogenesis. Elevated expression of MMP14 not only promotes glioma invasion and tumor cell proliferation but also plays a role in angiogenesis. Despite the fact that levels of MMP14 correlate with breast cancer progression, the controversial role of MMP14 in gliomagenesis needs to be elucidated. In the present review, we discuss the role of MMP14 in glioma progression as well as the mechanisms of MMP14 regulation in the context of future therapeutic manipulations.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Carcinogénesis/genética , Glioblastoma/patología , Glioblastoma/terapia , Metaloproteinasa 14 de la Matriz/fisiología , Animales , Encéfalo/patología , Neoplasias Encefálicas/genética , Carcinogénesis/metabolismo , Glioblastoma/genética , Humanos , Metaloproteinasa 14 de la Matriz/genética , Terapia Molecular Dirigida , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nature ; 455(7211): 391-5, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18701889

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus that can cause life-threatening disease in the fetus and the immunocompromised host. Upon attachment to the cell, the virus induces robust inflammatory, interferon- and growth-factor-like signalling. The mechanisms facilitating viral entry and gene expression are not clearly understood. Here we show that platelet-derived growth factor-alpha receptor (PDGFR-alpha) is specifically phosphorylated by both laboratory and clinical isolates of HCMV in various human cell types, resulting in activation of the phosphoinositide-3-kinase (PI(3)K) signalling pathway. Upon stimulation by HCMV, tyrosine-phosphorylated PDGFR-alpha associated with the p85 regulatory subunit of PI(3)K and induced protein kinase B (also known as Akt) phosphorylation, similar to the genuine ligand, PDGF-AA. Cells in which PDGFR-alpha was genetically deleted or functionally blocked were non-permissive to HCMV entry, viral gene expression or infectious virus production. Re-introducing human PDGFRA gene into knockout cells restored susceptibility to viral entry and essential viral gene expression. Blockade of receptor function with a humanized PDGFR-alpha blocking antibody (IMC-3G3) or targeted inhibition of its kinase activity with a small molecule (Gleevec) completely inhibited HCMV viral internalization and gene expression in human epithelial, endothelial and fibroblast cells. Viral entry in cells harbouring endogenous PDGFR-alpha was competitively inhibited by pretreatment with PDGF-AA. We further demonstrate that HCMV glycoprotein B directly interacts with PDGFR-alpha, resulting in receptor tyrosine phosphorylation, and that glycoprotein B neutralizing antibodies inhibit HCMV-induced PDGFR-alpha phosphorylation. Taken together, these data indicate that PDGFR-alpha is a critical receptor required for HCMV infection, and thus a target for novel anti-viral therapies.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Línea Celular , Activación Enzimática/efectos de los fármacos , Regulación Viral de la Expresión Génica , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/deficiencia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
12.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370784

RESUMEN

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.

13.
Sci Adv ; 10(23): eadj7706, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848360

RESUMEN

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.


Asunto(s)
Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioma , Células Madre Neoplásicas , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Glioma/tratamiento farmacológico , Temozolomida/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico
14.
medRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38633778

RESUMEN

Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.

15.
Curr Opin Oncol ; 25(6): 682-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097102

RESUMEN

PURPOSE OF REVIEW: First described in 2002, the presence and role of human cytomegalovirus (HCMV) infection in glioblastoma (GBM) has remained a controversial topic. New research indicates HCMV gene products likely promote GBM pathogenesis and that therapies aimed at HCMV might influence disease progression. RECENT FINDINGS: Recently, investigators have begun to analyze HCMV genome and proteins present in GBM cells in vivo. Furthermore, the research has demonstrated that several HCMV gene products that have oncomodulatory properties are expressed in GBM and may be impacting tumor pathogenesis in vivo. These HCMV gene products modulate GBM proliferation, apoptosis, angiogenesis, invasion and immune evasion. A recent mouse model provides mechanistic information as to how CMV may promote gliomagenesis in the setting of tumor suppressor dysfunction and STAT3 signaling. In addition, clinical outcomes of GBM patients are associated with the degree of HCMV infection. Novel therapies aimed at direct antiviral and immunotherapy approaches to HCMV suggest that these modalities may impact the future treatment of this disease. SUMMARY: A more precise understanding of the role of HCMV infection in gliomagenesis and GBM pathogenesis could reveal novel therapeutic and preventive strategies.


Asunto(s)
Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/virología , Infecciones por Citomegalovirus/complicaciones , Citomegalovirus/aislamiento & purificación , Glioblastoma/epidemiología , Glioblastoma/virología , Infecciones Tumorales por Virus/complicaciones , Animales , Antivirales/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Infecciones por Citomegalovirus/epidemiología , Femenino , Ganciclovir/análogos & derivados , Ganciclovir/uso terapéutico , Regulación Neoplásica de la Expresión Génica/inmunología , Regulación Viral de la Expresión Génica/inmunología , Glioblastoma/tratamiento farmacológico , Humanos , Masculino , Ratones , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Infecciones Tumorales por Virus/epidemiología , Valganciclovir
16.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395278

RESUMEN

The most active human endogenous retrovirus K (HERV-K) subtype, HML-2, has been implicated as a driver of oncogenesis in several cancers. However, the presence and function of HML-2 in malignant gliomas has remained unclear. In this issue of the JCI, Shah and colleagues demonstrate HML-2 overexpression in glioblastoma (GBM) and its role in maintaining the cancer stem cell phenotype. Given that stem-like cells are considered responsible for GBM heterogeneity and treatment resistance, targeting the stem cell niche may reduce tumor recurrence and improve clinical outcomes. The findings provide a foundation for future studies to determine whether antiretroviral and/or immunotherapy approaches targeting HML-2 could be used as therapeutics for GBM.


Asunto(s)
Retrovirus Endógenos , Glioblastoma , Humanos , Retrovirus Endógenos/genética , Glioblastoma/genética , Recurrencia Local de Neoplasia/genética
17.
CNS Oncol ; 12(3): CNS102, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462385

RESUMEN

Aim: The EMulate Therapeutics Voyager™ is a simple, wearable, home-use device that uses an alternating electromagnetic field to alter biologic signaling within cells. Objective: To assess the safety/feasibility of the Voyager in the treatment of recurrent glioblastoma (rGBM). Methods: In this study, patients with rGBM were treated with Voyager as monotherapy or in combination with standard chemotherapy at the Investigator's discretion. Safety was assessed by incidence of adverse events associated with the Voyager. Patients were followed until death. Results: A total of 75 patients were enrolled and treated for at least one day with the Voyager (safety population). Device-related adverse events were uncommon and generally did not result in interruption or withdrawal from treatment. There were no serious adverse events associated with Voyager. A total of 60 patients were treated for at least one month (clinical utility population). The median progression-free survival (PFS) was 17 weeks (4.3 months) in the Voyager only group (n = 24) and 21 weeks (5.3 months) in the Voyager + concurrent therapy group (n = 36). The median overall survival (OS) was 7 months in the Voyager only group and 9 months in the Voyager + concurrent therapy group. In patients treated with Voyager + concurrent therapy, the median OS for patients enrolled with their 1st or 2nd recurrence (n = 26) was 10 months, while in patients enrolled with their 3rd or 4th recurrence (n = 10) OS was 7 months. Conclusion: The data support the safety and feasibility of the Voyager for the treatment of rGBM. Further prospective study of the device is warranted. Trial Registration Number: NCT02296580 (ClinicalTrials.gov).


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Estudios de Factibilidad , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia , Estudios Prospectivos
18.
Elife ; 122023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249212

RESUMEN

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.


Asunto(s)
Neocórtex , Humanos , Neocórtex/fisiología , Transmisión Sináptica/fisiología , Hibridación Fluorescente in Situ , Estudios Prospectivos , Neuronas/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Interneuronas/fisiología
19.
Science ; 382(6667): eadf2359, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824649

RESUMEN

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus. However, we found interindividual variance in abundances and gene expression signatures, particularly in deep-layer glutamatergic neurons and microglia. A minority of donor variance is explainable by age, sex, ancestry, disease state, and cell state. Genomic variation was associated with expression of 150 to 250 genes for most cell types. This characterization of cellular variation provides a baseline for cell typing in health and disease.


Asunto(s)
Lóbulo Temporal , Transcriptoma , Adulto , Humanos , Epilepsia/metabolismo , Perfilación de la Expresión Génica , Neuronas/metabolismo , Lóbulo Temporal/citología , Lóbulo Temporal/metabolismo , Enfermedades del Sistema Nervioso/genética , Trastornos Mentales/genética
20.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394838

RESUMEN

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Temozolomida/uso terapéutico , Estudios Prospectivos , Neoplasias Encefálicas/patología , Recurrencia , Células Dendríticas/patología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA