RESUMEN
Human immunodeficiency virus (HIV) capsid (CA) protein is a promising target for developing novel anti-HIV drugs. Starting from highly anticipated CA inhibitors PF-74, we used scaffold hopping strategy to design a series of novel 1,2,4-triazole phenylalanine derivatives by targeting an unexplored region composed of residues 106-109 in HIV-1 CA hexamer. Compound d19 displayed excellent antiretroviral potency against HIV-1 and HIV-2 strains with EC50 values of 0.59 and 2.69 µM, respectively. Additionally, we show via surface plasmon resonance (SPR) spectrometry that d19 preferentially interacts with the hexameric form of CA, with a significantly improved hexamer/monomer specificity ratio (ratio = 59) than PF-74 (ratio = 21). Moreover, we show via SPR that d19 competes with CPSF-6 for binding to CA hexamers with IC50 value of 33.4 nM. Like PF-74, d19 inhibits the replication of HIV-1 NL4.3 pseudo typed virus in both early and late stages. In addition, molecular docking and molecular dynamics simulations provide binding mode information of d19 to HIV-1 CA and rationale for improved affinity and potency over PF-74. Overall, the lead compound d19 displays a distinct chemotype form PF-74, improved CA affinity, and anti-HIV potency.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/uso terapéutico , Proteínas de la Cápside/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/química , Humanos , Simulación del Acoplamiento Molecular , Fenilalanina/farmacología , Fenilalanina/uso terapéutico , Triazoles , Replicación ViralRESUMEN
As a key structural protein, HIV capsid (CA) protein plays multiple roles in the HIV life cycle, and is considered a promising target for anti-HIV treatment. Based on the structural information of CA modulator PF-74 bound to HIV-1 CA hexamer, 18 novel phenylalanine derivatives were synthesized via the Ugi four-component reaction. In vitro anti-HIV activity assays showed that most compounds exhibited low-micromolar-inhibitory potency against HIV. Among them, compound I-19 exhibited the best anti-HIV-1 activity (EC50 = 2.53 ± 0.84 µM, CC50 = 107.61 ± 27.43 µM). In addition, I-14 displayed excellent HIV-2 inhibitory activity (EC50 = 2.30 ± 0.11 µM, CC50 > 189.32 µM) with relatively low cytotoxicity, being more potent than that of the approved drug nevirapine (EC50 > 15.02 µM, CC50 > 15.2 µM). Additionally, surface plasmon resonance (SPR) binding assays demonstrated direct binding to the HIV CA protein. Moreover, molecular docking and molecular dynamics simulations provided additional information on the binding mode of I-19 to HIV-1 CA. In summary, we further explored the structureactivity relationships (SARs) and selectivity of anti-HIV-1/HIV-2 of PF-74 derivatives, which is conducive to discovering efficient anti-HIV drugs.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Peptidomiméticos , Fármacos Anti-VIH/química , Cápside , Proteínas de la Cápside/metabolismo , Diseño de Fármacos , VIH-1/metabolismo , Simulación del Acoplamiento Molecular , Nevirapina , Peptidomiméticos/farmacología , Fenilalanina , Relación Estructura-ActividadRESUMEN
HIV-1 capsid (CA) performs multiple roles in the viral life cycle and is a promising target for antiviral development. In this work, we describe the design, synthesis, assessment of antiviral activity, and mechanistic investigation of 20 piperazinone phenylalanine derivatives with a terminal indole or benzene ring. Among them, F2-7f exhibited moderate anti-HIV-1 activity with an EC50 value of 5.89 µM, which was slightly weaker than the lead compound PF74 (EC50 = 0.75 µM). Interestingly, several compounds showed a preference for HIV-2 inhibitory activity, represented by 7f with an HIV-2 EC50 value of 4.52 µM and nearly 5-fold increased potency over anti-HIV-1 (EC50 = 21.81 µM), equivalent to PF74 (EC50 = 4.16 µM). Furthermore, F2-7f preferred to bind to the CA hexamer rather than to the monomer, similar to PF74, according to surface plasmon resonance results. Molecular dynamics simulation indicated that F2-7f and PF74 bound at the same site. Additionally, we computationally analyzed the ADMET properties for 7f and F2-7f. Based on this analysis, 7f and F2-7f were predicted to have improved drug-like properties and metabolic stability over PF74, and no toxicities were predicted based on the chemotype of 7f and F2-7f. Finally, the experimental metabolic stability results of F2-7f in human liver microsomes and human plasma moderately correlated with our computational prediction. Our findings show that F2-7f is a promising small molecule targeting the HIV-1 CA protein with considerable development potential.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Humanos , Benceno , Fenilalanina , VIH-1/metabolismo , Proteínas de la Cápside/metabolismoRESUMEN
The AIDS pandemic is still of importance. HIV-1 and HIV-2 are the causative agents of this pandemic, and in the absence of a viable vaccine, drugs are continually required to provide quality of life for infected patients. The HIV capsid (CA) protein performs critical functions in the life cycle of HIV-1 and HIV-2, is broadly conserved across major strains and subtypes, and is underexploited. Therefore, it has become a therapeutic target of interest. Here, we report a novel series of 2-pyridone-bearing phenylalanine derivatives as HIV capsid modulators. Compound FTC-2 is the most potent anti-HIV-1 compound in the new series of compounds, with acceptable cytotoxicity in MT-4 cells (selectivity index HIV-1 > 49.57; HIV-2 > 17.08). However, compound TD-1a has the lowest EC50 in the anti-HIV-2 assays (EC50 = 4.86 ± 1.71 µM; CC50= 86.54 ± 29.24 µM). A water solubility test found that TD-1a showed a moderately increased water solubility compared with PF74, while the water solubility of FTC-2 was improved hundreds of times. Furthermore, we use molecular simulation studies to provide insight into the molecular contacts between the new compounds and HIV CA. We also computationally predict drug-like properties and metabolic stability for FTC-2 and TD-1a. Based on this analysis, TD-1a is predicted to have improved drug-like properties and metabolic stability over PF74. This study increases the repertoire of CA modulators and has important implications for developing anti-HIV agents with novel mechanisms, especially those that inhibit the often overlooked HIV-2.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Humanos , Cápside , Fenilalanina , Calidad de Vida , Replicación Viral , VIH-1/metabolismo , Proteínas de la Cápside/metabolismo , VIH-2/metabolismo , Agua/metabolismo , Relación Estructura-ActividadRESUMEN
The HIV-1 Capsid (CA) is considered as a promising target for the development of potent antiviral drugs, due to its multiple roles during the viral life cycle. Herein, we report the design, synthesis, and antiviral activity evaluation of series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors. Among them, 4-methoxy-N-methylaniline substituted phenylalanine (II-13c) and indolin-5-amine substituted phenylalanine (V-25i) displayed exceptional anti-HIV-1 activity with the EC50 value of 5.14 and 2.57 µM respectively, which is slightly weaker than that of lead compound PF-74 (EC50 = 0.42 µM). Besides, surface plasmon resonance (SPR) binding assay demonstrated II-13c and V-25i prefer to combine with CA hexamer rather than monomer, which is similar to PF-74. Subsequently, molecular dynamics simulation (MD) revealed potential interactions between representative compounds with HIV-1 CA hexamer. Overall, this work laid a solid foundation for further structural optimization to discover novel promising HIV-1 CA inhibitors.
Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Diseño de Fármacos , VIH-1/efectos de los fármacos , Fenilalanina/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Proteínas de la Cápside/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , VIH-1/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Estructura Molecular , Fenilalanina/síntesis química , Fenilalanina/química , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacosRESUMEN
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Asunto(s)
Fármacos Anti-VIH/farmacología , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/virología , Proteínas de la Cápside/antagonistas & inhibidores , Farmacorresistencia Viral/efectos de los fármacos , HumanosRESUMEN
Fostemsavir/temsavir is an investigational HIV-1 entry inhibitor currently in late-stage clinical trials. Although it holds promise to be a first-in-class Env-targeted entry inhibitor for the clinic, issues with bioavailability relegate its use to salvage therapies only. As such, the development of a small molecule HIV-1 entry inhibitor that can be used in standard combination antiretroviral therapy (cART) remains a longstanding goal for the field. We previously demonstrated the ability of extending the chemotypes available to this class of inhibitor as the first step towards this overarching goal. In addition to poor solubility, metabolic stability is a crucial determinant of bioavailability. Therefore, in this short communication, we assess the metabolic stabilities of five of our novel chemotype entry inhibitors. We found that changing the piperazine core region of temsavir alters the stability of the compound in human liver microsome assays. Moreover, we identified an entry inhibitor with more than twice the metabolic stability of temsavir and demonstrated that the orientation of the core replacement is critical for this increase. This work further demonstrates the feasibility of our long-term goal-to design an entry inhibitor with improved drug-like qualities-and warrants expanded studies to achieve this.
Asunto(s)
Fármacos Anti-VIH/farmacología , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Organofosfatos/química , Piperazinas/química , Triazoles/metabolismo , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/farmacología , Azetidinas/síntesis química , Azetidinas/química , Azetidinas/farmacología , Cromatografía Liquida , Células HEK293 , Proteína p24 del Núcleo del VIH/química , Proteína p24 del Núcleo del VIH/metabolismo , Inhibidores de Fusión de VIH/metabolismo , Infecciones por VIH/virología , Humanos , Microsomas Hepáticos/virología , Organofosfatos/farmacología , Piperazinas/farmacología , Unión Proteica , Pirrolidinas/síntesis química , Pirrolidinas/química , Pirrolidinas/farmacología , Espectrometría de Masas en Tándem , Triazoles/síntesis química , Triazoles/farmacología , Triazoles/toxicidadRESUMEN
Small-molecule HIV-1 entry inhibitors are an extremely attractive therapeutic modality. We have previously demonstrated that the entry inhibitor class can be optimized by using computational means to identify and extend the chemotypes available. Here we demonstrate unique and differential effects of previously published antiviral compounds on the gross structure of the HIV-1 Env complex, with an azabicyclohexane scaffolded inhibitor having a positive effect on glycoprotein thermostability. We demonstrate that modification of the methyltriazole-azaindole headgroup of these entry inhibitors directly effects the potency of the compounds, and substitution of the methyltriazole with an amine-oxadiazole increases the affinity of the compound 1000-fold over parental by improving the on-rate kinetic parameter. These findings support the continuing exploration of compounds that shift the conformational equilibrium of HIV-1 Env as a novel strategy to improve future inhibitor and vaccine design efforts.
Asunto(s)
Fármacos Anti-VIH , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Internalización del Virus/efectos de los fármacos , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-ActividadRESUMEN
p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.
Asunto(s)
Ataxina-3/metabolismo , Coenzimas/metabolismo , Miopatías Distales/metabolismo , Modelos Moleculares , Deficiencias en la Proteostasis/metabolismo , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Ataxina-3/química , Ataxina-3/genética , Sitios de Unión , Unión Competitiva , Coenzimas/química , Coenzimas/genética , Cristalografía por Rayos X , Bases de Datos de Proteínas , Miopatías Distales/enzimología , Miopatías Distales/genética , Humanos , Microscopía Electrónica de Transmisión , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Deficiencias en la Proteostasis/enzimología , Deficiencias en la Proteostasis/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/genéticaRESUMEN
Indian rhesus macaques (Macaca mulatta) are routinely used in preclinical studies to evaluate therapeutic Abs and candidate vaccines. The efficacy of these interventions in many cases is known to rely heavily on the ability of Abs to interact with a set of Ab FcγR expressed on innate immune cells. Yet, despite their presumed functional importance, M. mulatta Ab receptors are largely uncharacterized, posing a fundamental limit to ensuring accurate interpretation and translation of results from studies in this model. In this article, we describe the binding characteristics of the most prevalent allotypic variants of M. mulatta FcγR for binding to both human and M. mulatta IgG of varying subclasses. The resulting determination of the affinity, specificity, and glycan sensitivity of these receptors promises to be useful in designing and evaluating studies of candidate vaccines and therapeutic Abs in this key animal model and exposes significant evolutionary divergence between humans and macaques.
Asunto(s)
Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Animales , Sitios de Unión , Variación Genética/genética , Humanos , Macaca mulatta , Receptores Fc/genética , Receptores Fc/aislamiento & purificaciónRESUMEN
Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.
Asunto(s)
Isomerasa de Peptidilprolil/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Empalmosomas/metabolismo , Calorimetría , Dicroismo Circular , Clonación Molecular , Proteínas Intrínsecamente Desordenadas/metabolismo , Isomerasa de Peptidilprolil/genética , Unión Proteica , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Resonancia por Plasmón de Superficie , UltracentrifugaciónRESUMEN
RAD52 is a member of the homologous recombination (HR) pathway that is important for maintenance of genome integrity. While single RAD52 mutations show no significant phenotype in mammals, their combination with mutations in genes that cause hereditary breast cancer and ovarian cancer like BRCA1, BRCA2, PALB2 and RAD51C are lethal. Consequently, RAD52 may represent an important target for cancer therapy. In vitro, RAD52 has ssDNA annealing and DNA strand exchange activities. Here, to identify small molecule inhibitors of RAD52 we screened a 372,903-compound library using a fluorescence-quenching assay for ssDNA annealing activity of RAD52. The obtained 70 putative inhibitors were further characterized using biochemical and cell-based assays. As a result, we identified compounds that specifically inhibit the biochemical activities of RAD52, suppress growth of BRCA1- and BRCA2-deficient cells and inhibit RAD52-dependent single-strand annealing (SSA) in human cells. We will use these compounds for development of novel cancer therapy and as a probe to study mechanisms of DNA repair.
Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína Recombinante y Reparadora de ADN Rad52/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52/químicaRESUMEN
The entry of HIV-1 into permissible cells remains an extremely attractive and underexploited therapeutic intervention point. We have previously demonstrated the ability to extend the chemotypes available for optimization in the entry inhibitor class using computational means. Here, we continue this effort, designing and testing three novel compounds with the ability to inhibit HIV-1 entry. We demonstrate that alteration of the core moiety of these entry inhibitors directly influences the potency of the compounds, despite common proximal and distal groups. Moreover, by establishing for the first time a surface plasmon resonance (SPR)-based interaction assay with soluble recombinant SOSIP Env trimers, we demonstrate that the off-rate (kd) parameter shows the strongest correlation with potency in an antiviral assay. Finally, we establish an underappreciated relationship between the potency of a ligand and its degree of electrostatic complementarity (EC) with its target, the Env complex. These findings not only broaden the chemical space in this inhibitor class, but also establish a rapid and simple assay to evaluate future HIV-1 entry inhibitors.
Asunto(s)
Fármacos Anti-VIH/química , VIH-1/efectos de los fármacos , Piperazinas/química , Pirroles/química , Triazoles/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Humanos , Cinética , Simulación del Acoplamiento Molecular , Piperazinas/síntesis química , Piperazinas/farmacología , Unión Proteica , Multimerización de Proteína , Pirroles/síntesis química , Pirroles/farmacología , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Triazoles/síntesis química , Triazoles/farmacología , Internalización del Virus/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/químicaRESUMEN
Lipid droplets (LDs) are organelles that contribute to various cellular functions that are vital for life. Aside from acting as a neutral lipid storage depot, they are also involved in building new membranes, synthesis of steroid hormones, and cell signaling. Many aspects of LD structure and function are not yet well-understood. Here we investigate the interaction of perilipin 3, a member of the perilipin family of LD binding proteins, and three N-terminal truncation mutants with lipid monolayers. The interaction is studied as a function of surface pressure for a series of systematically chosen lipids. We find that the C terminus of perilipin 3 has different insertion behavior from that of the longer truncation mutants and the full-length protein. Inclusion of N-terminal sequences with the C terminus decreases the ability of the protein construct to insert in lipid monolayers. Coupling of anionic lipids to negative spontaneous curvature facilitates protein interaction and insertion. The C terminus shows strong preference for lipids with more saturated fatty acids. This work sheds light on the LD binding properties and function of the different domains of perilipin 3.
Asunto(s)
Perilipina-3/química , Fosfolípidos/química , Humanos , Gotas Lipídicas/química , Membranas Artificiales , Unión Proteica , Conformación Proteica en Hélice alfa , Transporte de Proteínas , TermodinámicaRESUMEN
Demand remains for new inhibitors of HIV-1 replication and the inhibition of HIV-1 entry is an extremely attractive therapeutic approach. Using field-based bioisosteric replacements, we have further extended the chemotypes available for development in the HIV-1 entry inhibitor class. Moreover, using field-based disparity analysis of the compounds, 3D structure-activity relationships were derived that will be useful in the further development of these inhibitors towards clinical utility.
Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Fármacos Anti-VIH/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Molecular , Electricidad Estática , Relación Estructura-ActividadRESUMEN
The HIV-1 CA protein is an attractive therapeutic target for the development of new antivirals. An inter-protomer pocket within the hexamer configuration of the CA, which is a binding site for key host dependency factors, is an especially appealing region for small molecule targeting. Using a field-based pharmacophore derived from an inhibitor known to interact with this region, coupled to biochemical and biological assessment, we have identified a new compound that inhibits HIV-1 infection and that targets the assembled CA hexamer.
Asunto(s)
Fármacos Anti-VIH/química , Proteínas de la Cápside/antagonistas & inhibidores , VIH-1/metabolismo , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Sitios de Unión , Proteínas de la Cápside/metabolismo , Línea Celular , Diseño de Fármacos , VIH-1/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Estructura Cuaternaria de Proteína , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Bacitracin is a metalloantibiotic agent that is widely used as a medicine and feed additive. It interferes with bacterial cell-wall biosynthesis by binding undecaprenyl-pyrophosphate, a lipid carrier that serves as a critical intermediate in cell wall production. Despite bacitracin's broad use, the molecular details of its target recognition have not been elucidated. Here we report a crystal structure for the ternary complex of bacitracin A, zinc, and a geranyl-pyrophosphate ligand at a resolution of 1.1 Å. The antibiotic forms a compact structure that completely envelopes the ligand's pyrophosphate group, together with flanking zinc and sodium ions. The complex adopts a highly amphipathic conformation that offers clues to antibiotic function in the context of bacterial membranes. Bacitracin's efficient sequestration of its target represents a previously unseen mode for the recognition of lipid pyrophosphates, and suggests new directions for the design of next-generation antimicrobial agents.
Asunto(s)
Bacitracina/metabolismo , Secuencia de Aminoácidos , Bacitracina/química , Membrana Celular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos de Poliisoprenilo/metabolismo , Unión Proteica , Conformación Proteica , Resonancia por Plasmón de SuperficieRESUMEN
Tyrocidine A, one of the first antibiotics ever to be discovered, is a cyclic decapeptide that binds to membranes of target bacteria, disrupting their integrity. It is active against a broad spectrum of Gram-positive organisms, and has recently engendered interest as a potential scaffold for the development of new drugs to combat antibiotic-resistant pathogens. We present here the X-ray crystal structure of tyrocidine A at a resolution of 0.95Å. The structure reveals that tyrocidine forms an intimate and highly amphipathic homodimer made up of four beta strands that associate into a single, highly curved antiparallel beta sheet. We used surface plasmon resonance and potassium efflux assays to demonstrate that tyrocidine binds tightly to mimetics of bacterial membranes with an apparent dissociation constant (K(D)) of 10 µM, and efficiently permeabilizes bacterial cells at concentrations equal to and below the K(D). Using variant forms of tyrocidine in which the fluorescent probe p-cyano-phenylalanine had been inserted on either the polar or apolar face of the molecule, we performed fluorescence quenching experiments, using both water-soluble and membrane-embedded quenchers. The quenching results, together with the structure, strongly support a membrane association model in which the convex, apolar face of tyrocidine's beta sheet is oriented toward the membrane interior, while the concave, polar face is presented to the aqueous phase.
Asunto(s)
Tirocidina/química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Cristalización/métodos , Cristalografía por Rayos X , Modelos Moleculares , Estructura Secundaria de Proteína , Tirocidina/farmacologíaRESUMEN
RAD54, an important homologous recombination protein, is a member of the SWI2/SNF2 family of ATPase-dependent DNA translocases. In vitro, RAD54 stimulates RAD51-mediated DNA strand exchange and promotes branch migration of Holliday junctions. It is thought that an ATPase-dependent DNA translocation is required for both of these RAD54 activities. Here we identified, by high-throughput screening, a specific RAD54 inhibitor, streptonigrin (SN), and used it to investigate the mechanisms of RAD54 activities. We found that SN specifically targets the RAD54 ATPase, but not DNA binding, through direct interaction with RAD54 and generation of reactive oxygen species. Consistent with the dependence of branch migration (BM) on the ATPase-dependent DNA translocation of RAD54, SN inhibited RAD54 BM. Surprisingly, the ability of RAD54 to stimulate RAD51 DNA strand exchange was not significantly affected by SN, indicating a relatively smaller role of RAD54 DNA translocation in this process. Thus, the use of SN enabled us to identify important differences in the effect of the RAD54 ATPase and DNA translocation on two major activities of RAD54, BM of Holliday junctions and stimulation of DNA pairing.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Estreptonigrina/farmacología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Hongos/genética , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Clostridium difficile-associated disease (CDAD) constitutes a large majority of nosocomial diarrhea cases in industrialized nations and is mediated by the effects of two secreted toxins, toxin A (TcdA) and toxin B (TcdB). Patients who develop strong antitoxin antibody responses can clear C. difficile infection and remain disease free. Key toxin-neutralizing epitopes have been found within the carboxy-terminal receptor binding domains (RBDs) of TcdA and TcdB, which has generated interest in developing the RBD as a viable vaccine target. While numerous platforms have been studied, very little data describes the potential of DNA vaccination against CDAD. Therefore, we created highly optimized plasmids encoding the RBDs from TcdA and TcdB in which any putative N-linked glycosylation sites were altered. Mice and nonhuman primates were immunized intramuscularly, followed by in vivo electroporation, and in these animal models, vaccination induced significant levels of both anti-RBD antibodies (blood and stool) and RBD-specific antibody-secreting cells. Further characterization revealed that sera from immunized mice and nonhuman primates could detect RBD protein from transfected cells, as well as neutralize purified toxins in an in vitro cytotoxicity assay. Mice that were immunized with plasmids or given nonhuman-primate sera were protected from a lethal challenge with purified TcdA and/or TcdB. Moreover, immunized mice were significantly protected when challenged with C. difficile spores from homologous (VPI 10463) and heterologous, epidemic (UK1) strains. These data demonstrate the robust immunogenicity and efficacy of a TcdA/B RBD-based DNA vaccine in preclinical models of acute toxin-associated and intragastric, spore-induced colonic disease.