Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Epigenomics ; : 1-14, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382450

RESUMEN

Aim: Childhood maltreatment (CM) may affect not only directly exposed individuals but also their offspring. However, the underlying biological mechanisms remain unclear. microRNAs (miRNAs) may play a regulatory role in this process. This study investigates the relationship between maternal exposure to CM and miRNA expression in maternal and perinatal tissues.Methods: We enrolled 43 pregnant women and assessed their CM exposure. We collected maternal blood, cord blood and placental tissue samples during childbirth and performed miRNA profiling using next generation sequencing.Results: Maternal CM was inversely associated with hsa-miR-582-3p levels in cord blood. Pathway analysis revealed that this miRNA regulates genes involved in intrauterine development.Conclusion: Our findings highlight the potential impact of maternal CM exposure on offspring epigenetic mechanisms.


Child maltreatment (CM) includes physical, sexual and emotional abuse, as well as physical and emotional neglect. CM not only harms those directly exposed but can also negatively impact their offspring. However, the biological reasons behind this are not well understood. To explore this further, our study investigates how CM affects the biology of pregnant women and their newborns through changes in small regulatory molecules called microRNAs (miRNAs). We recruited 43 pregnant women and assessed their exposure to CM. During childbirth, we collected blood samples from the mothers, blood from the umbilical cord and placental samples. We then analyzed the levels of miRNAs in these samples using advanced sequencing technology. We observed that more severe maternal exposure to CM was associated with lower levels of a miRNA named hsa-miR-582-3p in umbilical cord blood. This miRNA regulates genes involved in fetal development in utero and has been linked to spontaneous preterm birth. It may also influence immunologic and stress-related processes. Thus, newborns of mothers who had been exposed to CM may be more vulnerable to adverse effects on their brain development and overall health. Despite our small sample size, our study highlights the importance of addressing CM as an intergenerational concern and provides new insights into the biological mechanisms through which maternal CM can affect offspring.

2.
J Dev Orig Health Dis ; 14(5): 591-601, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37732425

RESUMEN

The deleterious effects of adversity are likely intergenerational, such that one generation's adverse experiences can affect the next. Epidemiological studies link maternal adversity to offspring depression and anxiety, possibly via transmission mechanisms that influence offspring fronto-limbic connectivity. However, studies have not thoroughly disassociated postnatal exposure effects nor considered the role of offspring sex. We utilized infant neuroimaging to test the hypothesis that maternal childhood maltreatment (CM) would be associated with increased fronto-limbic connectivity in infancy and tested brain-behavior associations in childhood. Ninety-two dyads participated (32 mothers with CM, 60 without; 52 infant females, 40 infant males). Women reported on their experiences of CM and non-sedated sleeping infants underwent MRIs at 2.44 ± 2.74 weeks. Brain volumes were estimated via structural MRI and white matter structural connectivity (fiber counts) via diffusion MRI with probabilistic tractography. A subset of parents (n = 36) reported on children's behaviors at age 5.17 ± 1.73 years. Males in the maltreatment group demonstrated greater intra-hemispheric fronto-limbic connectivity (b = 0.96, p= 0.008, [95%CI 0.25, 1.66]), no differences emerged for females. Fronto-limbic connectivity was related to somatic complaints in childhood only for males (r = 0.673, p = 0.006). Our findings suggest that CM could have intergenerational associations to offspring brain development, yet mechanistic studies are needed.


Asunto(s)
Sustancia Blanca , Masculino , Lactante , Niño , Humanos , Femenino , Preescolar , Sustancia Blanca/diagnóstico por imagen , Madres , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Ansiedad
3.
Neurobiol Stress ; 17: 100441, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35257017

RESUMEN

Objective: Improved understanding of the time course of neural changes associated with adolescent PTSD would elucidate the development of the disorder and could inform approaches to treatment. We compared hippocampal volumes and resting state functional connectivity (RSFC) in adolescent girls with post-traumatic stress disorder (PTSD) secondary to sexual assault, within six months of onset and age- and gender-matched, non-trauma exposed healthy controls (HCs) in São Paulo, Brazil. We also examined the relationship between pre- and post-treatment PTSD symptoms and RSFC. Method: We collected brain structure, RSFC, and PTSD symptoms in 30 adolescents with PTSD (mean age: 15.7 ± 1.04 years) and 21 HCs (mean age: 16.2 ± 1.21 years) at baseline. We collected repeated measures in 21 participants with PTSD following treatment; 9 participants dropped out. Hippocampal volume and RSFC from hippocampal and default mode network (DMN) seeds were compared between participants with PTSD and HCs. We examined associations between within-subject changes in RSFC and PTSD symptoms following treatment. Results: No hippocampal volumetric differences between groups were found. Compared to HCs, adolescents with recent PTSD had reduced RSFC between hippocampus and the lateral parietal node of the DMN, encompassing the angular gyrus, peak coordinates: -38, -54, 16; 116 voxels; peak F 1,47 = 31.76; FDR corrected p = 0.038. Improvements in PTSD symptoms were associated with increased RSFC between hippocampus and part of the lateral parietal node of the DMN, peak coordinates: -38, -84, 38; 316 voxels; peak F 1,47 = 40.28; FDR corrected p < 0.001. Conclusion: Adolescents with recent PTSD had reduced hippocampal-DMN RSFC, while no group differences in hippocampal volume were found, suggesting that hippocampal function, but not structure, is altered early in the course of PSTD. Following treatment, hippocampal-DMN RSFC increased with symptom improvement and may indicate an important neural mechanism related to successful PTSD treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA