Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(18): 8775-8780, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30962364

RESUMEN

Fine particulate matter (PM2.5) air pollution has been recognized as a major source of mortality in the United States for at least 25 years, yet much remains unknown about which sources are the most harmful, let alone how best to target policies to mitigate them. Such efforts can be improved by employing high-resolution geographically explicit methods for quantifying human health impacts of emissions of PM2.5 and its precursors. Here, we provide a detailed examination of the health and economic impacts of PM2.5 pollution in the United States by linking emission sources with resulting pollution concentrations. We estimate that anthropogenic PM2.5 was responsible for 107,000 premature deaths in 2011, at a cost to society of $886 billion. Of these deaths, 57% were associated with pollution caused by energy consumption [e.g., transportation (28%) and electricity generation (14%)]; another 15% with pollution caused by agricultural activities. A small fraction of emissions, concentrated in or near densely populated areas, plays an outsized role in damaging human health with the most damaging 10% of total emissions accounting for 40% of total damages. We find that 33% of damages occur within 8 km of emission sources, but 25% occur more than 256 km away, emphasizing the importance of tracking both local and long-range impacts. Our paper highlights the importance of a fine-scale approach as marginal damages can vary by over an order of magnitude within a single county. Information presented here can assist mitigation efforts by identifying those sources with the greatest health effects.

2.
Environ Sci Technol ; 49(24): 13929-36, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26535809

RESUMEN

UNLABELLED: The largest U.S. environmental health risk is cardiopulmonary mortality from ambient PM2.5. The concentration-response (C-R) for ambient PM2.5 in the U.S. is generally assumed to be linear: from any initial baseline, a given concentration reduction would yield the same improvement in health risk. Recent evidence points to the perplexing possibility that the PM2.5 C-R for cardiopulmonary mortality and some other major endpoints might be supralinear: a given concentration reduction would yield greater improvements in health risk as the initial baseline becomes cleaner. We explore the implications of supralinearity for air policy, emphasizing U.S. CONDITIONS: If C-R is supralinear, an economically efficient PM2.5 target may be substantially more stringent than under current standards. Also, if a goal of air policy is to achieve the greatest health improvement per unit of PM2.5 reduction, the optimal policy might call for greater emission reductions in already-clean locales-making "blue skies bluer"-which may be at odds with environmental equity goals. Regardless of whether the C-R is linear or supralinear, the health benefits of attaining U.S. PM2.5 levels well below the current standard would be large. For the supralinear C-R considered here, attaining the current U.S. EPA standard, 12 µg m(-3), would avert only ~17% (if C-R is linear: ∼ 25%) of the total annual cardiopulmonary mortality attributable to PM2.5.


Asunto(s)
Contaminación del Aire/prevención & control , Enfermedades Cardiovasculares/mortalidad , Política Ambiental , Enfermedades Pulmonares/mortalidad , Material Particulado , Contaminación del Aire/legislación & jurisprudencia , Enfermedades Cardiovasculares/etiología , Humanos , Enfermedades Pulmonares/etiología , Material Particulado/análisis , Material Particulado/toxicidad , Salud Pública , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA