RESUMEN
The analysis of cell-free DNA (cfDNA) from plasma offers great promise for the earlier detection of cancer. At present, changes in DNA sequence, methylation, or copy number are the most sensitive ways to detect the presence of cancer. To further increase the sensitivity of such assays with limited amounts of sample, it would be useful to be able to evaluate the same template molecules for all these changes. Here, we report an approach, called MethylSaferSeqS, that achieves this goal, and can be applied to any standard library preparation method suitable for massively parallel sequencing. The innovative step was to copy both strands of each DNA-barcoded molecule with a primer that allows the subsequent separation of the original strands (retaining their 5-methylcytosine residues) from the copied strands (in which the 5-methylcytosine residues are replaced with unmodified cytosine residues). The epigenetic and genetic alterations present in the DNA molecules can then be obtained from the original and copied strands, respectively. We applied this approach to plasma from 265 individuals, including 198 with cancers of the pancreas, ovary, lung, and colon, and found the expected patterns of mutations, copy number alterations, and methylation. Furthermore, we could determine which original template DNA molecules were methylated and/or mutated. MethylSaferSeqS should be useful for addressing a variety of questions relating genetics and epigenetics.
Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Femenino , Humanos , Metilación , 5-Metilcitosina , ADN/genética , Mutación , Neoplasias/genética , Metilación de ADNRESUMEN
BACKGROUND: The role of adjuvant chemotherapy in stage II colon cancer continues to be debated. The presence of circulating tumor DNA (ctDNA) after surgery predicts very poor recurrence-free survival, whereas its absence predicts a low risk of recurrence. The benefit of adjuvant chemotherapy for ctDNA-positive patients is not well understood. METHODS: We conducted a trial to assess whether a ctDNA-guided approach could reduce the use of adjuvant chemotherapy without compromising recurrence risk. Patients with stage II colon cancer were randomly assigned in a 2:1 ratio to have treatment decisions guided by either ctDNA results or standard clinicopathological features. For ctDNA-guided management, a ctDNA-positive result at 4 or 7 weeks after surgery prompted oxaliplatin-based or fluoropyrimidine chemotherapy. Patients who were ctDNA-negative were not treated. The primary efficacy end point was recurrence-free survival at 2 years. A key secondary end point was adjuvant chemotherapy use. RESULTS: Of the 455 patients who underwent randomization, 302 were assigned to ctDNA-guided management and 153 to standard management. The median follow-up was 37 months. A lower percentage of patients in the ctDNA-guided group than in the standard-management group received adjuvant chemotherapy (15% vs. 28%; relative risk, 1.82; 95% confidence interval [CI], 1.25 to 2.65). In the evaluation of 2-year recurrence-free survival, ctDNA-guided management was noninferior to standard management (93.5% and 92.4%, respectively; absolute difference, 1.1 percentage points; 95% CI, -4.1 to 6.2 [noninferiority margin, -8.5 percentage points]). Three-year recurrence-free survival was 86.4% among ctDNA-positive patients who received adjuvant chemotherapy and 92.5% among ctDNA-negative patients who did not. CONCLUSIONS: A ctDNA-guided approach to the treatment of stage II colon cancer reduced adjuvant chemotherapy use without compromising recurrence-free survival. (Supported by the Australian National Health and Medical Research Council and others; DYNAMIC Australian New Zealand Clinical Trials Registry number, ACTRN12615000381583.).
Asunto(s)
Antineoplásicos , Quimioterapia Adyuvante , ADN Tumoral Circulante , Neoplasias del Colon , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Australia , Quimioterapia Adyuvante/métodos , ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/sangre , Neoplasias del Colon/sangre , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Supervivencia sin Enfermedad , Fluorouracilo/uso terapéutico , Humanos , Recurrencia Local de Neoplasia/prevención & control , Estadificación de Neoplasias , Oxaliplatino/uso terapéuticoRESUMEN
We report a sensitive PCR-based assay called Repetitive Element AneupLoidy Sequencing System (RealSeqS) that can detect aneuploidy in samples containing as little as 3 pg of DNA. Using a single primer pair, we amplified â¼350,000 amplicons distributed throughout the genome. Aneuploidy was detected in 49% of liquid biopsies from a total of 883 nonmetastatic, clinically detected cancers of the colorectum, esophagus, liver, lung, ovary, pancreas, breast, or stomach. Combining aneuploidy with somatic mutation detection and eight standard protein biomarkers yielded a median sensitivity of 80% in these eight cancer types, while only 1% of 812 healthy controls scored positive.
Asunto(s)
Aneuploidia , Neoplasias , Secuencias Repetitivas de Ácidos Nucleicos , Biomarcadores de Tumor , ADN Tumoral Circulante , ADN/genética , Esófago , Humanos , Biopsia Líquida , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuenciación Completa del GenomaRESUMEN
OBJECTIVE: Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive precursor lesions that can progress to invasive pancreatic cancer and are classified as low-grade or high-grade based on the morphology of the neoplastic epithelium. We aimed to compare genetic alterations in low-grade and high-grade regions of the same IPMN in order to identify molecular alterations underlying neoplastic progression. DESIGN: We performed multiregion whole exome sequencing on tissue samples from 17 IPMNs with both low-grade and high-grade dysplasia (76 IPMN regions, including 49 from low-grade dysplasia and 27 from high-grade dysplasia). We reconstructed the phylogeny for each case, and we assessed mutations in a novel driver gene in an independent cohort of 63 IPMN cyst fluid samples. RESULTS: Our multiregion whole exome sequencing identified KLF4, a previously unreported genetic driver of IPMN tumorigenesis, with hotspot mutations in one of two codons identified in >50% of the analyzed IPMNs. Mutations in KLF4 were significantly more prevalent in low-grade regions in our sequenced cases. Phylogenetic analyses of whole exome sequencing data demonstrated diverse patterns of IPMN initiation and progression. Hotspot mutations in KLF4 were also identified in an independent cohort of IPMN cyst fluid samples, again with a significantly higher prevalence in low-grade IPMNs. CONCLUSION: Hotspot mutations in KLF4 occur at high prevalence in IPMNs. Unique among pancreatic driver genes, KLF4 mutations are enriched in low-grade IPMNs. These data highlight distinct molecular features of low-grade and high-grade dysplasia and suggest diverse pathways to high-grade dysplasia via the IPMN pathway.
Asunto(s)
Adenocarcinoma Mucinoso/genética , Carcinoma Papilar/genética , Secuenciación del Exoma , Neoplasias Intraductales Pancreáticas/genética , Adenocarcinoma Mucinoso/patología , Biomarcadores de Tumor/genética , Carcinoma Papilar/patología , Humanos , Factor 4 Similar a Kruppel/genética , Mutación , Clasificación del Tumor , Neoplasias Intraductales Pancreáticas/patología , Estudios RetrospectivosRESUMEN
Studies in multiple solid tumor types have demonstrated the prognostic significance of ctDNA analysis after curative intent surgery. A combined analysis of data across completed studies could further our understanding of circulating tumor DNA (ctDNA) as a prognostic marker and inform future trial design. We combined individual patient data from three independent cohort studies of nonmetastatic colorectal cancer (CRC). Plasma samples were collected 4 to 10 weeks after surgery. Mutations in ctDNA were assayed using a massively parallel sequencing technique called SafeSeqS. We analyzed 485 CRC patients (230 Stage II colon, 96 Stage III colon, and 159 locally advanced rectum). ctDNA was detected after surgery in 59 (12%) patients overall (11.0%, 12.5% and 13.8% for samples taken at 4-6, 6-8 and 8-10 weeks; P = .740). ctDNA detection was associated with poorer 5-year recurrence-free (38.6% vs 85.5%; P < .001) and overall survival (64.6% vs 89.4%; P < .001). The predictive accuracy of postsurgery ctDNA for recurrence was higher than that of individual clinicopathologic risk features. Recurrence risk increased exponentially with increasing ctDNA mutant allele frequency (MAF) (hazard ratio, 1.2, 2.5 and 5.8 for MAF of 0.1%, 0.5% and 1%). Postsurgery ctDNA was detected in 3 of 20 (15%) patients with locoregional and 27 of 60 (45%) with distant recurrence (P = .018). This analysis demonstrates a consistent long-term impact of ctDNA as a prognostic marker across nonmetastatic CRC, where ctDNA outperforms other clinicopathologic risk factors and MAF further stratifies recurrence risk. ctDNA is a better predictor of distant vs locoregional recurrence.
Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/genética , Mutación , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Estudios de Cohortes , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/cirugía , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Pronóstico , Modelos de Riesgos Proporcionales , Adulto JovenRESUMEN
Aneuploidy is a feature of most cancer cells, and a myriad of approaches have been developed to detect it in clinical samples. We previously described primers that could be used to amplify â¼38,000 unique long interspersed nucleotide elements (LINEs) from throughout the genome. Here we have developed an approach to evaluate the sequencing data obtained from these amplicons. This approach, called Within-Sample AneupLoidy DetectiOn (WALDO), employs supervised machine learning to detect the small changes in multiple chromosome arms that are often present in cancers. We used WALDO to search for chromosome arm gains and losses in 1,677 tumors and in 1,522 liquid biopsies of blood from cancer patients or normal individuals. Aneuploidy was detected in 95% of cancer biopsies and in 22% of liquid biopsies. Using single-nucleotide polymorphisms within the amplified LINEs, WALDO concomitantly assesses allelic imbalances, microsatellite instability, and sample identification. WALDO can be used on samples containing only a few nanograms of DNA and as little as 1% neoplastic content and has a variety of applications in cancer diagnostics and forensic science.
Asunto(s)
Aneuploidia , Elementos de Nucleótido Esparcido Largo/genética , Neoplasias/genética , Aberraciones Cromosómicas , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodosRESUMEN
BACKGROUND: Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis. METHODS: We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in microdissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations. RESULTS: Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P=0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35GâT and c.35GâC, and another carried identical KRAS c.35GâA mutations in three distinct lesions. CONCLUSIONS: We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions.
Asunto(s)
Endometriosis/genética , Endometrio/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Transformación Celular Neoplásica/genética , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN/métodos , Proteínas de Unión al ADN , Endometriosis/patología , Exoma , Femenino , Humanos , Persona de Mediana Edad , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Reacción en Cadena de la Polimerasa , Proteína Fosfatasa 2/genética , Factores de Transcripción/genéticaRESUMEN
The identification of mutations that are present at low frequencies in clinical samples is an essential component of precision medicine. The development of molecular barcoding for next-generation sequencing has greatly enhanced the sensitivity of detecting such mutations by massively parallel sequencing. However, further improvements in specificity would be useful for a variety of applications. We herein describe a technology (BiSeqS) that can increase the specificity of sequencing by at least two orders of magnitude over and above that achieved with molecular barcoding and can be applied to any massively parallel sequencing instrument. BiSeqS employs bisulfite treatment to distinguish the two strands of molecularly barcoded DNA; its specificity arises from the requirement for the same mutation to be identified in both strands. Because no library preparation is required, the technology permits very efficient use of the template DNA as well as sequence reads, which are nearly all confined to the amplicons of interest. Such efficiency is critical for clinical samples, such as plasma, in which only tiny amounts of DNA are often available. We show here that BiSeqS can be applied to evaluate transversions, as well as small insertions or deletions, and can reliably detect one mutation among >10,000 wild-type molecules.
Asunto(s)
ADN de Neoplasias/genética , Neoplasias/genética , Sulfitos/química , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/química , Humanos , MutaciónRESUMEN
The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient's primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types.
Asunto(s)
Antígeno CA-19-9/sangre , Carcinoma Ductal Pancreático/diagnóstico , ADN Tumoral Circulante/sangre , Neoplasias Pancreáticas/diagnóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Anciano , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/genética , Estudios de Casos y Controles , Femenino , Genes p53 , Humanos , Biopsia Líquida , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genéticaRESUMEN
OBJECTIVE: For patients with locally advanced rectal cancer (LARC), adjuvant chemotherapy selection following surgery remains a major clinical dilemma. Here, we investigated the ability of circulating tumour DNA (ctDNA) to improve risk stratification in patients with LARC. DESIGN: We enrolled patients with LARC (T3/T4 and/or N+) planned for neoadjuvant chemoradiotherapy. Plasma samples were collected pretreatment, postchemoradiotherapy and 4-10 weeks after surgery. Somatic mutations in individual patient's tumour were identified via massively parallel sequencing of 15 genes commonly mutated in colorectal cancer. We then designed personalised assays to quantify ctDNA in plasma samples. Patients received adjuvant therapy at clinician discretion, blinded to the ctDNA results. RESULTS: We analysed 462 serial plasma samples from 159 patients. ctDNA was detectable in 77%, 8.3% and 12% of pretreatment, postchemoradiotherapy and postsurgery plasma samples. Significantly worse recurrence-free survival was seen if ctDNA was detectable after chemoradiotherapy (HR 6.6; P<0.001) or after surgery (HR 13.0; P<0.001). The estimated 3-year recurrence-free survival was 33% for the postoperative ctDNA-positive patients and 87% for the postoperative ctDNA-negative patients. Postoperative ctDNA detection was predictive of recurrence irrespective of adjuvant chemotherapy use (chemotherapy: HR 10.0; P<0.001; without chemotherapy: HR 22.0; P<0.001). Postoperative ctDNA status remained an independent predictor of recurrence-free survival after adjusting for known clinicopathological risk factors (HR 6.0; P<0.001). CONCLUSION: Postoperative ctDNA analysis stratifies patients with LARC into subsets that are either at very high or at low risk of recurrence, independent of conventional clinicopathological risk factors. ctDNA analysis could potentially be used to guide patient selection for adjuvant chemotherapy.
Asunto(s)
Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Neoplasias del Recto/genética , Neoplasias del Recto/terapia , Australia , Terapia Combinada , Diagnóstico por Imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Estudios Prospectivos , Neoplasias del Recto/sangre , Neoplasias del Recto/patología , Sistema de Registros , Factores de Riesgo , Análisis de SupervivenciaRESUMEN
Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14(+) cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14(+) epithelial tumor cell clusters disseminate collectively to colonize distant organs.
Asunto(s)
Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Queratina-14/genética , Metástasis de la Neoplasia/genética , Animales , Neoplasias de la Mama/genética , Humanos , RatonesRESUMEN
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary: Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
RESUMEN
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from patients with cancer and controls were prespecified into four cohorts used for model training, analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS could be ascribed to a single feature-the global reduction of AluS subfamily elements in the circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of another independent dataset obtained with a different approach (whole-genome sequencing). The evaluation of Alu elements may therefore have the potential to enhance the performance of several methods designed for the earlier detection of cancer.
Asunto(s)
Neoplasias , Humanos , Reproducibilidad de los Resultados , Neoplasias/diagnóstico , Neoplasias/genética , Elementos de Nucleótido Esparcido Corto , Aprendizaje Automático , AneuploidiaRESUMEN
Cell-free DNA (cfDNA) concentrations from patients with cancer are often elevated compared with those of healthy controls, but the sources of this extra cfDNA have never been determined. To address this issue, we assessed cfDNA methylation patterns in 178 patients with cancers of the colon, pancreas, lung, or ovary and 64 patients without cancer. Eighty-three of these individuals had cfDNA concentrations much greater than those generally observed in healthy subjects. The major contributor of cfDNA in all samples was leukocytes, accounting for â¼76% of cfDNA, with neutrophils predominating. This was true regardless of whether the samples were derived from patients with cancer or the total plasma cfDNA concentration. High levels of cfDNA observed in patients with cancer did not come from either neoplastic cells or surrounding normal epithelial cells from the tumor's tissue of origin. These data suggest that cancers may have a systemic effect on cell turnover or DNA clearance. SIGNIFICANCE: The origin of excess cfDNA in patients with cancer is unknown. Using cfDNA methylation patterns, we determined that neither the tumor nor the surrounding normal tissue contributes this excess cfDNA-rather it comes from leukocytes. This finding suggests that cancers have a systemic impact on cell turnover or DNA clearance. See related commentary by Thierry and Pisareva, p. 2122. This article is featured in Selected Articles from This Issue, p. 2109.
Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Neoplasias Ováricas , Humanos , Femenino , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , ADN de Neoplasias/genética , Páncreas/patología , Neoplasias Ováricas/genética , Pulmón/patología , Neoplasias Colorrectales/genética , Biomarcadores de Tumor/genéticaRESUMEN
Identification and quantification of low-frequency mutations remain challenging despite improvements in the baseline error rate of next-generation sequencing technologies. Here, we describe a method, termed SaferSeqS, that addresses these challenges by (1) efficiently introducing identical molecular barcodes in the Watson and Crick strands of template molecules and (2) enriching target sequences with strand-specific PCR. The method achieves high sensitivity and specificity and detects variants at frequencies below 1 in 100,000 DNA template molecules with a background mutation rate of <5 × 10-7 mutants per base pair (bp). We demonstrate that it can evaluate mutations in a single amplicon or simultaneously in multiple amplicons, assess limited quantities of cell-free DNA with high recovery of both strands and reduce the error rate of existing PCR-based molecular barcoding approaches by >100-fold.
Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , ADN de Neoplasias/sangre , ADN de Neoplasias/genética , Humanos , Mutación , Tasa de Mutación , Reacción en Cadena de la PolimerasaRESUMEN
Cathepsin K, the most potent mammalian collagenase, has been implicated in osteoporosis, cancer metastasis, atherosclerosis, and arthritis. Although procathepsin K is stable and readily detected, the active mature cathepsin K eludes detection by in vitro methods due to its shorter half-life and inactivation at neutral pH. We describe, for the first time, reliable detection, visualization, and quantification of mature cathepsin K to femtomole resolution using gelatin zymography. The specificity of the method was validated with cathepsin K knockdown using small interfering RNA (siRNA) transfection of human monocyte-derived macrophages, and enzymatic activity confirmed with benzyloxycarbonyl-glycine-proline-arginine-7-amino-4-methylcoumarin (Z-GPR-AMC) substrate hydrolysis was fit to a computational model of enzyme kinetics. Furthermore, cathepsin K zymography was used to show that murine osteoclasts secrete more cathepsin K than is stored intracellularly, and this was opposite to the behavior of the macrophages from which they were differentiated. In summary, this inexpensive, species-independent, antibody-free protocol describes a sensitive method with broad potential to elucidate previously undetectable cathepsin K activity.
Asunto(s)
Catepsina K/análisis , Electroforesis en Gel de Poliacrilamida/métodos , Animales , Catepsina K/genética , Línea Celular , Gelatina/química , Técnicas de Silenciamiento del Gen , Humanos , Cinética , Macrófagos/enzimología , Macrófagos/inmunología , Ratones , ARN Interferente Pequeño/metabolismoRESUMEN
Biomarkers have a wide range of applications in the clinical management of cancer, including screening and therapeutic management. Tumor DNA released from neoplastic cells has become a particularly active area of cancer biomarker development due to the critical role somatic alterations play in the pathophysiology of cancer and the ability to assess released tumor DNA in accessible clinical samples, in particular blood (i.e., liquid biopsy). Many of the early applications of tumor DNA as a biomarker were pioneered in colorectal cancer due to its well-defined genetics and common occurrence, the effectiveness of early detection, and the availability of effective therapeutic options. Herein, in the context of colorectal cancer, we describe how the intended clinical application dictates desired biomarker test performance, how features of tumor DNA provide unique challenges and opportunities for biomarker development, and conclude with specific examples of clinical application of tumor DNA as a biomarker with particular emphasis on early detection.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , ADN de Neoplasias/metabolismo , Detección Precoz del Cáncer/métodos , Neoplasias Colorrectales/patología , HumanosRESUMEN
Cancer treatments are often more successful when the disease is detected early. We evaluated the feasibility and safety of multicancer blood testing coupled with positron emission tomography-computed tomography (PET-CT) imaging to detect cancer in a prospective, interventional study of 10,006 women not previously known to have cancer. Positive blood tests were independently confirmed by a diagnostic PET-CT, which also localized the cancer. Twenty-six cancers were detected by blood testing. Of these, 15 underwent PET-CT imaging and nine (60%) were surgically excised. Twenty-four additional cancers were detected by standard-of-care screening and 46 by neither approach. One percent of participants underwent PET-CT imaging based on false-positive blood tests, and 0.22% underwent a futile invasive diagnostic procedure. These data demonstrate that multicancer blood testing combined with PET-CT can be safely incorporated into routine clinical care, in some cases leading to surgery with intent to cure.
Asunto(s)
Detección Precoz del Cáncer/métodos , Pruebas Hematológicas , Tamizaje Masivo/métodos , Neoplasias/sangre , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anciano , Estudios de Cohortes , Femenino , HumanosRESUMEN
IMPORTANCE: For patients with resected, nonmetastatic colorectal cancer (CRC), the optimal surveillance protocol remains unclear. OBJECTIVE: To evaluate whether serial circulating tumor DNA (ctDNA) levels detected disease recurrence earlier, compared with conventional postoperative surveillance, in patients with resected CRC. DESIGN, SETTING, AND PARTICIPANTS: This study included patients (n = 58) with stage I, II, or III CRC who underwent radical surgical resection at 4 Swedish hospitals from February 2, 2007, to May 8, 2013. Eighteen patients received adjuvant chemotherapy at the discretion of their clinicians, who were blinded to the ctDNA results. Blood samples were collected at 1 month after the surgical procedure and every 3 to 6 months thereafter for ctDNA analysis. Patients were followed up until metachronous metastases were detected, or for a median of 49 months. Data analysis was performed from March 1, 2009, to June 23, 2018. MAIN OUTCOMES AND MEASURES: Sensitivity and timing of ctDNA positivity were compared with those of conventional surveillance modalities (computed tomographic scans and serum carcinoembryonic antigen tests) for the detection of disease recurrence. RESULTS: This study included 319 blood samples from 58 patients, with a median (range) age of 69 (47-83) years and 34 males (59%). The recurrence rate among patients with positive ctDNA levels was 77% (10 of 13 patients). Positive ctDNA preceded radiologic and clinical evidence of recurrence by a median of 3 months. Of the 45 patients with negative ctDNA throughout follow-up, none (0%; 95% CI, 0%-7.9%) experienced a relapse, with a median follow-up of 49 months. However, 3 (6%; 95% CI, 1.3%-17%) of the 48 patients without relapse had a positive ctDNA result, which subsequently fell to undetectable levels during follow-up. CONCLUSION AND RELEVANCE: Although these findings need to be validated in a larger, prospective trial, they suggest that ctDNA analysis could complement conventional surveillance strategies as a triage test to stratify patients with resected CRC on the basis of risk of disease recurrence.
RESUMEN
Importance: Adjuvant chemotherapy in patients with stage III colon cancer prevents recurrence by eradicating minimal residual disease. However, which patients remain at high risk of recurrence after completing standard adjuvant treatment cannot currently be determined. Postsurgical circulating tumor DNA (ctDNA) analysis can detect minimal residual disease and is associated with recurrence in colorectal cancers. Objective: To determine whether serial postsurgical and postchemotherapy ctDNA analysis could provide a real-time indication of adjuvant therapy efficacy in stage III colon cancer. Design, Setting, and Participants: This multicenter, Australian, population-based cohort biomarker study recruited 100 consecutive patients with newly diagnosed stage III colon cancer planned for 24 weeks of adjuvant chemotherapy from November 1, 2014, through May 31, 2017. Patients with another malignant neoplasm diagnosed within the last 3 years were excluded. Median duration of follow-up was 28.9 months (range, 11.6-46.4 months). Physicians were blinded to ctDNA results. Data were analyzed from December 10, 2018, through June 23, 2019. Exposures: Serial plasma samples were collected after surgery and after chemotherapy. Somatic mutations in individual patients' tumors were identified via massively parallel sequencing of 15 genes commonly mutated in colorectal cancer. Personalized assays were designed to quantify ctDNA. Main Outcomes and Measures: Detection of ctDNA and recurrence-free interval (RFI). Results: After 4 exclusions, 96 eligible patients were eligible; median patient age was 64 years (range, 26-82 years); 49 (51%) were men. At least 1 somatic mutation was identified in the tumor tissue of all 96 evaluable patients. Circulating tumor DNA was detectable in 20 of 96 (21%) postsurgical samples and was associated with inferior recurrence-free survival (hazard ratio [HR], 3.8; 95% CI, 2.4-21.0; P < .001). Circulating tumor DNA was detectable in 15 of 88 (17%) postchemotherapy samples. The estimated 3-year RFI was 30% when ctDNA was detectable after chemotherapy and 77% when ctDNA was undetectable (HR, 6.8; 95% CI, 11.0-157.0; P < .001). Postsurgical ctDNA status remained independently associated with RFI after adjusting for known clinicopathologic risk factors (HR, 7.5; 95% CI, 3.5-16.1; P < .001). Conclusions and Relevance: Results suggest that ctDNA analysis after surgery is a promising prognostic marker in stage III colon cancer. Postchemotherapy ctDNA analysis may define a patient subset that remains at high risk of recurrence despite completing standard adjuvant treatment. This high-risk population presents a unique opportunity to explore additional therapeutic approaches.