Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Clin Immunol ; 43(2): 271-285, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251205

RESUMEN

Patients with inborn errors of immunity (IEI) in Argentina were encouraged to receive licensed Sputnik, AstraZeneca, Sinopharm, Moderna, and Pfizer vaccines, even though most of the data of humoral and cellular responses combination on available vaccines comes from trials conducted in healthy individuals. We aimed to evaluate the safety and immunogenicity of the different vaccines in IEI patients in Argentina. The study cohort included adults and pediatric IEI patients (n = 118) and age-matched healthy controls (HC) (n = 37). B cell response was evaluated by measuring IgG anti-spike/receptor binding domain (S/RBD) and anti-nucleocapsid(N) antibodies by ELISA. Neutralization antibodies were also assessed with an alpha-S protein-expressing pseudo-virus assay. The T cell response was analyzed by IFN-γ secretion on S- or N-stimulated PBMC by ELISPOT and the frequency of S-specific circulating T follicular-helper cells (TFH) was evaluated by flow cytometry.No moderate/severe vaccine-associated adverse events were observed. Anti-S/RBD titers showed significant differences in both pediatric and adult IEI patients versus the age-matched HC cohort (p < 0.05). Neutralizing antibodies were also significantly lower in the patient cohort than in age-matched HC (p < 0.01). Positive S-specific IFN-γ response was observed in 84.5% of IEI patients and 82.1% presented S-specific TFH cells. Moderna vaccines, which were mainly administered in the pediatric population, elicited a stronger humoral response in IEI patients, both in antibody titer and neutralization capacity, but the cellular immune response was similar between vaccine platforms. No difference in humoral response was observed between vaccinated patients with and without previous SARS-CoV-2 infection.In conclusion, COVID-19 vaccines showed safety in IEI patients and, although immunogenicity was lower than HC, they showed specific anti-S/RBD IgG, neutralizing antibody titers, and T cell-dependent cellular immunity with IFN-γ secreting cells. These findings may guide the recommendation for a vaccination with all the available vaccines in IEI patients to prevent COVID-19 disease.


Asunto(s)
COVID-19 , Vacunas , Adulto , Humanos , Niño , Vacunas contra la COVID-19 , Leucocitos Mononucleares , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Anticuerpos Neutralizantes , Ensayo de Immunospot Ligado a Enzimas , Inmunoglobulina G , Anticuerpos Antivirales , Inmunidad Celular
2.
Cancer Immunol Immunother ; 71(4): 979-987, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34467417

RESUMEN

Venetoclax treatment has demonstrated efficacy and a safety profile in chronic lymphocytic leukemia (CLL) patients, however the emergence of resistant cells is a current complication. We and others, previously reported that the activation of CLL cells by signals that mimic microenvironment stimuli favors the upregulation of anti-apoptotic proteins from B cell lymphoma-2 (BCL-2) family that are not targeted by venetoclax, reducing malignant cell sensitivity to the drug. We here studied venetoclax-resistant CLL cells generated in vitro by autologous activated T lymphocytes, and found that they showed an aggressive phenotype characterized by increased expression of activation and proliferation markers. Moreover, surviving cells expressed high levels of B cell lymphoma-extra-large (BCL-XL) and/or myeloid cell leukemia-1 (MCL-1), and a sustained resistance to a second treatment with the drug. Interestingly, the spleen tyrosine kinase (SYK) inhibitor entospletinib, and the phosphoinositide 3-kinase delta (PI3Kδ) inhibitor idelalisib, reduced T cell activation, impaired the generation of leukemic cells with this aggressive phenotype, and were able to restore CLL sensitivity to venetoclax. Our data highlight a novel combination to overcome resistance to venetoclax in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Sulfonamidas , Microambiente Tumoral
3.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32055920

RESUMEN

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Asunto(s)
Carbolinas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Quimiocina CCL19/inmunología , Quimiocina CCL19/metabolismo , Quimiocina CCL21/inmunología , Quimiocina CCL21/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Cultivo Primario de Células , Receptores CCR7/inmunología , Receptores CCR7/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral/inmunología
4.
Int J Cancer ; 144(5): 1128-1134, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30178523

RESUMEN

Reprogramming of neutrophils by malignant cells is well-described for many types of solid tumors, but data remain scarce for hematological diseases. Chronic lymphocytic leukemia (CLL) is characterized for a deep immune dysregulation mediated by leukemic cells that compromises patient's outcome. Murine models of CLL highlight the relevance of myeloid cells as tumor-driven reprogramming targets. In our study, we evaluated neutrophil reprogramming by CLL cells. We first show that the proportion of the CD16high CD62Ldim neutrophil subset in peripheral blood of CLL patients is increased compared to age-matched healthy donors (HD). In vitro, neutrophils from HD cultured in the presence of CLL cells or conditioned media (CM) from CLL cells exhibited a longer lifespan. Depletion of G-CSF and GM-CSF from CM partially reversed the protective effect. In addition, the proportion of viable neutrophils that displayed a CD16high CD62Ldim phenotype was increased in the presence of CM from CLL cells, being TGF-ß/IL-10 responsible for this effect. Altogether, our results describe a novel mechanism through which CLL cells can manipulate neutrophils.


Asunto(s)
Diferenciación Celular/fisiología , Tolerancia Inmunológica/fisiología , Selectina L/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Neutrófilos/patología , Receptores de IgG/metabolismo , Anciano , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Cancer Immunol Immunother ; 66(1): 77-89, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27796477

RESUMEN

Chronic lymphocytic leukemia (CLL) is characterized by immune defects that contribute to a high rate of infections and autoimmune cytopenias. Neutrophils are the first line of innate immunity and respond to pathogens through multiple mechanisms, including the release of neutrophil extracellular traps (NETs). These web-like structures composed of DNA, histones, and granular proteins are also produced under sterile conditions and play important roles in thrombosis and autoimmune disorders. Here we show that neutrophils from CLL patients are more prone to release NETs compared to those from age-matched healthy donors (HD). Increased generation of NETs was not due to higher levels of elastase, myeloperoxidase, or reactive oxygen species production. Instead, we found that plasma from CLL patients was able to prime neutrophils from HD to generate higher amounts of NETs upon activation. Plasmatic IL-8 was involved in the priming effect since its depletion reduced plasma capacity to enhance NETs release. Finally, we found that culture with NETs delayed spontaneous apoptosis and increased the expression of activation markers on leukemic B cells. Our study provides new insights into the immune dysregulation in CLL and suggests that the chronic inflammatory environment typical of CLL probably underlies this inappropriate neutrophil priming.


Asunto(s)
Trampas Extracelulares/inmunología , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/inmunología , Neutrófilos/inmunología , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Humanos , Interleucina-8/inmunología , Persona de Mediana Edad
6.
Cancer Immunol Immunother ; 66(4): 461-473, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28011996

RESUMEN

Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.


Asunto(s)
Indazoles/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Macrófagos/inmunología , Oxazinas/farmacología , Pirazinas/farmacología , Piridinas/farmacología , Quinasa Syk/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Proteína Tirosina Quinasa ZAP-70/metabolismo , Anciano , Anciano de 80 o más Años , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Rituximab/farmacología , Linfocitos T/inmunología
9.
Haematologica ; 103(10): e458-e461, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748439
10.
Front Oncol ; 13: 1143881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020867

RESUMEN

The treatment of chronic lymphocytic leukemia (CLL) patients with venetoclax-based regimens has demonstrated efficacy and a safety profile, but the emergence of resistant cells and disease progression is a current complication. Therapeutic target of sphingosine kinases (SPHK) 1 and 2 has opened new opportunities in the treatment combinations of cancer patients. We previously reported that the dual SPHK1/2 inhibitor, SKI-II enhanced the in vitro cell death triggered by fludarabine, bendamustine or ibrutinib and reduced the activation and proliferation of chronic lymphocytic leukemia (CLL) cells. Since we previously showed that autologous activated T cells from CLL patients favor the activation of CLL cells and the generation of venetoclax resistance due to the upregulation of BCL-XL and MCL-1, we here aim to determine whether SPHK inhibitors affect this process. To this aim we employed the dual SPHK1/2 inhibitor SKI-II and opaganib, a SPHK2 inhibitor that is being studied in clinical trials. We found that SPHK inhibitors reduce the activation of CLL cells and the generation of venetoclax resistance induced by activated T cells mainly due to a reduced upregulation of BCL-XL. We also found that SPHK2 expression was enhanced in CLL cells by activated T cells of the same patient and the presence of venetoclax selects resistant cells with high levels of SPHK2. Of note, SPHK inhibitors were able to re-sensitize already resistant CLL cells to a second venetoclax treatment. Our results highlight the therapeutic potential of SPHK inhibitors in combination with venetoclax as a promising treatment option for the patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA