RESUMEN
BACKGROUND: Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES: The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS: Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for â¼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS: Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS: Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.
Asunto(s)
Cardiolipinas , Ácido Linoleico , Masculino , Ratones , Animales , Cardiolipinas/metabolismo , Mitocondrias , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Dieta , Fosfolípidos/metabolismo , Ácidos Linoleicos/metabolismo , RespiraciónRESUMEN
Chemotherapy can result in toxic side effects in the brain. Intake of marine-based omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), alter brain fatty acids, potentially improving brain function. However, it is unclear if alpha-linolenic acid (ALA), the plant-based n-3, affects brain PUFAs during chemotherapy. The objective of this study was to examine the effects of dietary ALA, EPA and DHA, with high or low sucrose, on brain PUFAs in a mouse model of chemotherapy. Secondarily, the use of liver PUFAs as surrogate measures of brain PUFAs was examined. Lipid peroxidation (4-HNE) and neurotrophic markers (BDNF) were assessed. Female C57Bl/6 mice (n = 90) were randomized to 1 of 5 diets (high EPA + DHA/high or low sucrose, high ALA/high or low sucrose, or control with no EPA + DHA/low ALA/low sucrose) and injected with doxorubicin-based chemotherapy or saline. Brain EPA and DHA were greater (p < 0.0001) with high EPA + DHA diets, regardless of sucrose; there were no significant differences in brain PUFAs between high ALA diets and control. Chemotherapy-treated mice had higher brain and liver DHA (p < 0.05) and lower brain and liver linoleic acid (p < 0.0001). Brain n-3 and n-6 PUFAs were strongly correlated with liver n-3 (r = 0.8214, p < 0.0001) and n-6 PUFAs (r = 0.7568, p < 0.0001). BDNF was correlated with brain total PUFAs (r = 0.36; p < 0.05). In conclusion, dietary ALA in proportions approximately two times greater than consumed by humans did not appreciably increase brain n-3 PUFAs compared to low ALA intake. Liver PUFAs may be a useful surrogate marker of brain PUFAs in this mouse model.
Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Animales , Ratones , Biomarcadores , Encéfalo , Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Hígado , Ratones Endogámicos C57BL , SacarosaRESUMEN
Perinatal health and health behaviors play a crucial role in maternal and neonatal health. Data examining psychosocial factors which predict self-reported health and health behaviors as well as objective indicators downstream of health behaviors among pregnant women are lacking. In this longitudinal study design with 131 pregnant women, perceived social support was examined as a predictor of self-rated health and average levels of sleep quality, health-promoting and health-impairing behaviors, and red blood cell (RBC) polyunsaturated fatty acids across early, mid, and late pregnancy. Participants provided a blood sample and fatty acid methyl esters were analyzed by gas chromatography. Measures included the Multidimensional Scale of Perceived Social Support, Pittsburgh Sleep Quality Index, and Prenatal Health Behavior Scale. Regression models demonstrated that, after adjustment for income, race/ethnicity, age, relationship status, pre-pregnancy body mass index, greater social support was associated with better self-rated health (p = 0.001), greater sleep quality (p = 0.001), fewer health-impairing behaviors (p = 0.02), and higher RBC omega-3 fatty acids (p = 0.003). Associations among social support with health-promoting behaviors, RBC omega-6 fatty acids, or gestational weight gain were not significant. Findings underscore the benefits of perceived social support in the context of pregnancy. Examination of pathways that link social support with these outcomes will be meaningful in determining the ways in which perinatal psychosocial interventions may promote health.
Asunto(s)
Promoción de la Salud , Mujeres Embarazadas , Femenino , Conductas Relacionadas con la Salud , Humanos , Recién Nacido , Estudios Longitudinales , Embarazo , Mujeres Embarazadas/psicología , Autoinforme , Apoyo SocialRESUMEN
BACKGROUND: Sarcopenia may hasten the risk of mortality in women with breast cancer. Long-chain omega-3 (n-3) polyunsaturated fatty acids (LCn-3PUFAs) may favor muscle mass which, in turn, could enhance resilience of cancer patients toward cancer treatment. OBJECTIVES: The objective of this study was to measure the relation of erythrocyte LCn-3PUFA concentrations with lean mass, grip strength, and postprandial energy metabolism in women with newly diagnosed breast cancer. METHODS: This cross-sectional analysis evaluated women (n = 150) ages 65 y and younger who were recently diagnosed with breast cancer (stages I-III). Erythrocyte LCn-3PUFA composition was measured using GC. Body composition was measured by DXA. Grip strength was assessed at the same visit. Postprandial energy metabolism was measured for 7.5 h after the consumption of a high-calorie, high-saturated-fat test meal using indirect calorimetry. Associations of fatty acids with outcomes were analyzed using multiple linear regression models and linear mixed-effects models. RESULTS: The ω-3 index, a measurement of LCn-3PUFA status, was positively associated with appendicular lean mass (ALM)/BMI (ß = 0.015, P = 0.01) and grip strength (ß = 0.757, P = 0.04) after adjusting data for age and cancer stage. However, when cardiorespiratory fitness was also included in the analyses, these relations were no longer significant (P > 0.08). After a test meal, a higher ω-3 index was associated with a less steep rise in fat oxidation (P = 0.02) and a steeper decline in glucose (P = 0.01) when adjusting for age, BMI, cancer stage, and cardiorespiratory fitness. CONCLUSIONS: The ω-3 index was positively associated with ALM/BMI and grip strength in women newly diagnosed with breast cancer and was associated with altered postprandial substrate metabolism. These findings warrant further studies to determine whether enriching the diet with LCn-3PUFAs during and after cancer treatments is causally linked with better muscle health and metabolic outcomes in breast cancer survivors.
Asunto(s)
Neoplasias de la Mama , Ácidos Grasos Omega-3 , Anciano , Estudios Transversales , Eritrocitos , Ácidos Grasos , Femenino , Fuerza de la Mano , HumanosRESUMEN
Short-term (3-day) consumption of a high fat diet (HFD) rich in saturated fats is associated with a neuroinflammatory response and subsequent cognitive impairment in aged, but not young adult, male rats. This exaggerated effect in aged rats could be due to a "primed" microglial phenotype observed in the normal aging process in rodents in which aged microglia display a potentiated response to immune challenge. Here, we investigated the impact of HFD on microglial priming and lipid composition in the hippocampus and amygdala of young and aged rats. Furthermore, we investigated the microglial response to palmitate, the main saturated fatty acid (SFA) found in HFD that is proinflammatory. Our results indicate that HFD increased gene expression of microglial markers of activation indicative of microglial priming, including CD11b, MHCII, CX3CR1, and NLRP3, as well as the pro-inflammatory marker IL-1ß in both hippocampus and amygdala-derived microglia. Furthermore, HFD increased the concentration of SFAs and decreased the concentration of polyunsaturated fatty acids (PUFAs) in the hippocampus. We also observed a specific decrease in the anti-inflammatory PUFA docosahexaenoic acid (DHA) in the hippocampus and amygdala of aged rats. In a separate cohort of young and aged animals, isolated microglia from the hippocampus and amygdala exposed to palmitate in vitro induced an inflammatory gene expression profile mimicking the effects of HFD in vivo. These data suggest that palmitate may be a critical nutritional signal from the HFD that is directly involved in hippocampal and amygdalar inflammation. Interestingly, microglial activation markers were increased in response to HFD or palmitate in an age-independent manner, suggesting that HFD sensitivity of microglia, under these experimental conditions, is not the sole mediator of the exaggerated inflammatory response observed in whole tissue extracts from aged HFD-fed rats.
Asunto(s)
Ácidos Grasos , Microglía , Amígdala del Cerebelo , Animales , Dieta Alta en Grasa , Hipocampo , Masculino , RatasRESUMEN
There is increasing evidence that chronic inflammation is associated with increased breast cancer risk. Long-chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) may reduce circulating biomarkers of inflammation; however associations of blood LCω-3PUFA with breast tissue LCω-3PUFA and breast tissue biomarkers of inflammation are not well understood. We conducted a cross-sectional analysis of breast tissue and blood samples from n = 85 women with no history of breast cancer, who underwent breast reduction surgery. Fatty acids of erythrocytes and undissected breast tissues were analyzed by gas chromatography; C-reactive protein (CRP), interleukin (IL)-6 and IL-8 in plasma and tissue were measured by ELISA. Multivariable-adjusted regression models were used to estimate associations between erythrocyte LCω-3PUFA and breast tissue biomarkers. Women in the highest erythrocyte LCω-3PUFA tertile had LCω-3PUFA concentrations in the breast 73% (95% CI: 31-128%; p trend < 0.0001) higher than women in the lowest tertile. Associations for each individual LCω-3PUFA were similar in magnitude. No significant association was found for the shorter ω-3 PUFA, α-linolenic acid. Although compatible with no association, women in the highest tertile of erythrocyte eicosapentaenoic acid had a nonsignificant 32% (95% CI: -23 to 62%) reduced breast tissue CRP. No correlation was observed between erythrocyte ω-3 PUFA and tissue IL-6 or IL-8 concentrations. Our findings provide evidence that erythrocyte ω-3 fatty acids are valid measures of breast tissue concentrations, and limited evidence that inverse associations from prospective epidemiologic studies of blood LCω-3PUFA and breast cancer risk may be partly explained by reductions in breast tissue inflammation; however, these findings require replication.
Asunto(s)
Eritrocitos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Glándulas Mamarias Humanas/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Estudios Transversales , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Mamoplastia , Glándulas Mamarias Humanas/cirugía , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
Background: Increasing evidence suggests the unique susceptibility of estrogen receptor and progesterone receptor negative (ERPR-) breast cancer to dietary fat amount and type. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may modulate breast adipose fatty acid profiles and downstream bioactive metabolites to counteract pro-inflammatory, pro-carcinogenic signaling in the mammary microenvironment. Objective: To determine effects of ~1 to 5 g/d EPA+DHA over 12 months on breast adipose fatty acid and oxylipin profiles in women with ERPR(-) breast cancer, a high-risk molecular subtype. Methods: We conducted a 12-month randomized controlled, double-blind clinical trial of ~5g/d vs ~1g/d DHA+EPA supplementation in women within 5 years of completing standard therapy for ERPR(-) breast cancer Stages 0-III. Blood and breast adipose tissue specimens were collected every 3 months for biomarker analyses including fatty acids by gas chromatography, oxylipins by LC-MS/MS, and DNA methylation by reduced-representation bisulfite sequencing (RRBS). Results: A total of 51 participants completed the 12-month intervention. Study treatments were generally well-tolerated. While both doses increased n-3 PUFAs from baseline in breast adipose, erythrocytes, and plasma, the 5g/d supplement was more potent (n =51, p <0.001). The 5g/d dose also reduced plasma triglycerides from baseline (p =0.008). Breast adipose oxylipins at 0, 6, and 12 months showed dose-dependent increases in unesterified and esterified DHA and EPA metabolites (n =28). Distinct DNA methylation patterns in adipose tissue after 12 months were identified, with effects unique to the 5g/d dose group (n =17). Conclusions: Over the course of 1 year, EPA+DHA dose-dependently increased concentrations of these fatty acids and their derivative oxylipin metabolites, producing differential DNA methylation profiles of gene promoters involved in metabolism-related pathways critical to ERPR(-) breast cancer development and progression. These data provide evidence of both metabolic and epigenetic effects of n-3 PUFAs in breast adipose tissue, elucidating novel mechanisms of action for high-dose EPA+DHA-mediated prevention of ERPR(-) breast cancer.
RESUMEN
OBJECTIVES: Chronic pancreatitis (CP) is an inflammatory disease affecting the absorption of fat-soluble nutrients. Signaling in pancreatic cells that lead to inflammation may be influenced by fatty acids (FAs) through diet and de novo lipogenesis. Here, we investigated the relationship between plasma FA composition in CP with heterogeneity of etiology and complications of CP. MATERIALS AND METHODS: Blood and clinical parameters were collected from subjects with CP (n = 47) and controls (n = 22). Plasma was analyzed for FA composition using gas chromatography and compared between controls and CP and within CP. RESULTS: Palmitic acid increased, and linoleic acid decreased in CP compared with controls. Correlations between age or body mass index and FAs are altered in CP compared with controls. Diabetes, pancreatic calcifications, and substance usage, but not exocrine pancreatic dysfunction, were associated with differences in oleic acid and linoleic acid relative abundance in CP. De novo lipogenesis index was increased in the plasma of subjects with CP compared with controls and in calcific CP compared with noncalcific CP. CONCLUSIONS: Fatty acids that are markers of de novo lipogenesis and linoleic acid are dysregulated in CP depending on the etiology or complication. These results enhance our understanding of CP and highlight potential pathways targeting FAs for treating CP.
Asunto(s)
Ácidos Grasos , Ácido Linoleico , Pancreatitis Crónica , Humanos , Proyectos Piloto , Pancreatitis Crónica/sangre , Pancreatitis Crónica/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Adulto , Ácidos Grasos/sangre , Ácido Linoleico/sangre , Estudios de Casos y Controles , Lipogénesis , Anciano , Ácido Palmítico/sangre , Ácido Oléico/sangre , Biomarcadores/sangreRESUMEN
INTRODUCTION: Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS: NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS: Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION: Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.
Asunto(s)
Biomarcadores , Lipocalina 2 , Pancreatitis Crónica , Humanos , Masculino , Femenino , Lipocalina 2/sangre , Pancreatitis Crónica/sangre , Pancreatitis Crónica/diagnóstico , Persona de Mediana Edad , Biomarcadores/sangre , Adulto , Estudios Transversales , Leucocitos Mononucleares/metabolismo , Anciano , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Ácido Linoleico/sangre , Estudios de Casos y ControlesRESUMEN
Objectives: Chronic pancreatitis (CP) is an inflammatory disease that affects the absorption of nutrients like fats. Molecular signaling in pancreatic cells can be influenced by fatty acids (FAs) and changes in FA abundance could impact CP-associated complications. Here, we investigated FA abundance in CP compared to controls and explored how CP-associated complications and risk factors affect FA abundance. Methods: Blood and clinical parameters were collected from subjects with (n=47) and without CP (n=22). Plasma was analyzed for relative FA abundance using gas chromatography and compared between controls and CP. Changes in FA abundance due to clinical parameters were also assessed in both groups. Results: Decreased relative abundance of polyunsaturated fatty acids (PUFAs) and increased monounsaturated fatty acids (MUFAs) were observed in subjects with CP in a sex-dependent manner. The relative abundance of linoleic acid increased, and oleic acid decreased in CP subjects with exocrine pancreatic dysfunction and a history of substance abuse. Conclusions: Plasma FAs like linoleic acid are dysregulated in CP in a sex-dependent manner. Additionally, risk factors and metabolic dysfunction further dysregulate FA abundance in CP. These results enhance our understanding of CP and highlight potential novel targets and metabolism-related pathways for treating CP.
RESUMEN
Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma.
RESUMEN
SCOPE: Higher circulating linoleic acid (LA) and muscle-derived tetralinoleoyl-cardiolipin (LA4 CL) are each associated with decreased cardiometabolic disease risk. Mitochondrial dysfunction occurs with low LA4 CL. Whether LA-rich oil fortification can increase LA4 CL in humans is unknown. The aims of this study are to determine whether dietary fortification with LA-rich oil for 2 weeks increases: 1) LA in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC); and 2) LA4 CL in PBMC in adults. METHODS AND RESULTS: In this randomized controlled trial, adults are instructed to consume one cookie per day delivering 10 g grapeseed (LA-cookie, N = 42) or high oleate (OA) safflower (OA-cookie, N = 42) oil. In the LA-cookie group, LA increases in plasma, erythrocyte, and PBMC by 6%, 7%, and 10% respectively. PBMC and erythrocyte OA increase by 7% and 4% in the OA-cookie group but is unchanged in the plasma. PBMC LA4 CL increases (5%) while LA3 OA1 CL decreases (7%) in the LA-cookie group but are unaltered in the OA-cookie group. CONCLUSIONS: LA-rich oil fortification increases while OA-oil has no effect on LA4 CL in adults. Because LA-rich oil fortification reduces cardiometabolic disease risk and increases LA4 CL, determining whether mitochondrial dysfunction is repaired through dietary fortification is warranted.
Asunto(s)
Enfermedades Cardiovasculares , Ácido Linoleico , Adulto , Cardiolipinas , Enfermedades Cardiovasculares/prevención & control , Ácidos Grasos , Humanos , Leucocitos Mononucleares , Ácido OléicoRESUMEN
Cardiolipin (CL) is a phospholipid unique to the inner mitochondrial membrane that supports respiratory chain structure and function and is demonstrated to be influenced by types of dietary fats. However, the influence of dietary fat on CL species and how this best supports mitochondrial function in brown adipose tissue (BAT), which exhibits an alternative method of energy utilization through the uncoupling of the mitochondrial proton gradient to generate heat, is not well understood. Therefore, the aim of our study was to evaluate metabolic parameters, interscapular BAT CL quantity, species, and mitochondrial function in mice consuming isocaloric moderate-fat diets with either lard (LD; similar fatty acid profile to western dietary patterns) or safflower oil high in linoleic acid (SO), shown to be metabolically favorable in large clinical meta-analyses. Mice fed the SO diet exhibited decreased adiposity, improved insulin sensitivity, and enrichment of LA-containing CL species in BAT CL. Furthermore, mice fed the SO diet exhibit higher levels of OXPHOS complex proteins and increased oxygen consumption in BAT. Our findings demonstrate that dietary consumption of LA-rich oil improves metabolic parameters, increases LA-containing CL species, and improves BAT function when compared to the consumption of lard in mice during diet-induced weight gain.
RESUMEN
Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity.
RESUMEN
Cachexia occurs in up to 80% of pancreatic ductal adenocarcinoma (PDAC) patients and is characterized by unintentional weight loss and tissue wasting. To understand the metabolic changes that occur in PDAC-associated cachexia, we compared the abundance of plasma fatty acids (FAs), measured by gas chromatography, of subjects with treatment-naïve metastatic PDAC with or without cachexia, defined as a loss of > 2% weight and evidence of sarcopenia (n = 43). The abundance of saturated, monounsaturated, and polyunsaturated FAs was not different between subjects with cachexia and those without. Oleic acid was significantly higher in subjects with cachexia (p = 0.0007) and diabetes (p = 0.015). Lauric (r = 0.592, p = 0.0096) and eicosapentaenoic (r = 0.564, p = 0.015) acids were positively correlated with age in cachexia patients. Subjects with diabetes (p = 0.021) or both diabetes and cachexia (p = 0.092) had low palmitic:oleic acid ratios. Linoleic acid was lower in subjects with diabetes (p = 0.018) and correlated with hemoglobin (r = 0.519, p = 0.033) and albumin (r = 0.577, p = 0.015) in subjects with cachexia. Oleic or linoleic acid may be useful treatment targets or biomarkers of cachexia in patients with metastatic PDAC, particularly those with diabetes.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/complicaciones , Caquexia/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Grasos/metabolismo , Humanos , Ácidos Linoleicos , Ácido Oléico , Neoplasias Pancreáticas/complicaciones , Neoplasias PancreáticasRESUMEN
SCOPE: Cancer cachexia is characterized by the loss of skeletal muscle resulting in functional impairment, reduced quality of life and mortality. Naringenin, a flavonoid found in citrus fruits, improves insulin sensitivity and reduces inflammation and tumor growth in preclinical models. Therefore, the study hypothesizes that dietary supplementation of naringenin will improve insulin sensitivity, decrease inflammation, slow body weight loss, and delay tumor growth in a mouse model of cancer cachexia. METHODS AND RESULTS: Mice are fed 2 wt% dietary naringenin before and during initiation of cancer cachexia using inoculated adenocarcinoma-26 cells (C-26). Food intake, body weight, body composition, muscle function, insulin tolerance, and inflammatory status are assessed. Although naringenin-fed tumor-bearing mice exhibit reductions in body weight and food intake earlier than control diet-fed tumor-bearing mice, dietary naringenin is protective against loss of muscle strength, and attenuates the onset of insulin resistance and markers of inflammation. CONCLUSIONS: Dietary supplementation of naringenin improves multiple aspects of metabolic disturbance and inflammation during cancer cachexia progression in [C-26 tumor-bearing] mice. However, the acceleration of anorexia and weight loss is also observed. These findings emphasize the link between inflammation and insulin resistance as a basis for understanding their roles in the pathogenesis of cancer cachexia.
Asunto(s)
Resistencia a la Insulina , Neoplasias , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/prevención & control , Dieta , Flavanonas , Fuerza de la Mano , Inflamación/metabolismo , Ratones , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Calidad de Vida , Pérdida de PesoRESUMEN
BACKGROUND: The onset of menopause increases the risk of metabolic syndrome (MetS). Adiponectin is an adipokine associated with insulin sensitivity that is lower in people with MetS. Supplementing diets with linoleic acid (LA)-rich oil increased adiponectin concentrations and improved glucose control in women with type 2 diabetes. The effect of LA on adipokines, especially total and the bioactive form of adiponectin, high-molecular-weight (HMW) adiponectin, in women with MetS is unknown. OBJECTIVES: The aim of this study was to explore the effect of supplementation of the diet with an oil rich in LA on adipokines in women with MetS. The effect of the LA-rich oil (LA-oil) on oxylipins, key metabolites that may influence inflammation and metabolism, was also explored. METHODS: In this open-label single-arm pilot study, 18 postmenopausal nondiabetic women with MetS enrolled in a 2-phase study were instructed to consume LA-rich vegetable oil (10 mL/d) as part of their habitual diets. Women consumed an oleic acid-rich oil (OA-oil) for 4 wk followed by an LA-oil for 16 wk. Fasting concentrations of adipokines, fatty acids, oxylipins, and markers of glycemia and inflammation were measured. RESULTS: After 4 wk of OA-oil consumption, fasting glucose and total adiponectin concentrations decreased whereas fasting C-reactive protein increased. After 16 wk of LA-oil supplementation total and HMW adiponectin and plasma oxylipins increased. Markers of inflammation and glycemia were unchanged after LA-oil consumption. CONCLUSIONS: Supplementation with LA-oil increased total and HMW adiponectin concentrations and altered plasma oxylipin profiles. Larger studies are needed to elucidate the links between these changes and MetS.This trial was registered at clinicaltrials.gov as NCT02063165.
RESUMEN
While there is considerable evidence supporting health benefits of consuming diets high in omega-3 (n-3) fatty acids, there is no quick and effective tool to measure n-3 intake. The objective of this study was to evaluate the accuracy of a rapid assessment questionnaire (the Omega-3 Checklist) used to quantify intake of n-3 fatty acids. This was done by comparing n-3 intakes to blood biomarkers of n-3 exposure in a population of healthy men and women. In addition, a separate analysis was run including covariates age, sex, and weight, which have been shown to affect n-3 biomarker levels. Reported intake of eicosapentaenoic acid (EPA), docoshexaenoic acid (DHA), and EPA + DHA was correlated with erythrocyte EPA (Spearman's rank correlation rs = 0.51, p < 0.001), DHA (rs = 0.54, p < 0.001), and the Omega-3 Index (rs = 0.57, p < 0.001). These associations remained significant when controlling for age, sex, and weight. Therefore, the Omega-3 Checklist can be a useful, rapid assessment tool to estimate individuals' EPA and DHA intake.
Asunto(s)
Encuestas sobre Dietas/normas , Dieta , Ácidos Grasos Omega-3/administración & dosificación , Adulto , Envejecimiento/sangre , Biomarcadores/sangre , Peso Corporal , Lista de Verificación , Eritrocitos/química , Ácidos Grasos Omega-3/sangre , Femenino , Humanos , Masculino , Caracteres SexualesRESUMEN
Cachexia is responsible for nearly 20% of all cancerrelated deaths, yet effective therapies to prevent or treat the disease are lacking. Clinical studies have shown that male patients lose weight at a faster rate than females. Additionally, an 'obesity paradox' may exist where excess adiposity may confer survival to patients with cancer cachexia. To further explore these phenomena, the aim of this study was to evaluate the role of changes of adipose tissue mass, sex status, and tumor mass on outcomes of male, female and ovariectomized (OVX) mice with C26 adenocarcinomainduced cachexia. We used EchoMRI to assess body composition and grip strength to measure muscle function. Body weights and food intake were measured daily. Mice were euthanized 19 days post-inoculation. Postnecropsy, muscle fiber crosssectional areas were quantified and realtime PCR was performed for genes relating to proteolysis. Survival curve, correlation and multiple linear regression analyses were performed to identify predictors of cachexia. Female and OVX tumor mice developed cachexia similarly to males, as evidenced by loss of skeletal and adipose masses, decreased grip strength, and increased proteolytic gene expression. Notably, female and OVX tumor mice had earlier onset of cachexia (≥5% weight loss) than male tumor mice. Larger tumor mass and lower adipose mass were the strongest predicting factors for increased severity of cachexia, regardless of sex or ovariectomy status. These results indicated that the impact of sex status may be subtle in comparison to the predictive effect of tumor and adipose mass in mice with C26induced cachexia.
Asunto(s)
Adenocarcinoma/patología , Adiposidad/fisiología , Caquexia/fisiopatología , Neoplasias del Colon/patología , Carga Tumoral/fisiología , Adenocarcinoma/complicaciones , Animales , Caquexia/diagnóstico , Caquexia/etiología , Línea Celular Tumoral/trasplante , Neoplasias del Colon/complicaciones , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Femenino , Masculino , Ratones , Ovariectomía , Índice de Severidad de la Enfermedad , Factores Sexuales , Factores de Tiempo , Pérdida de Peso/fisiologíaRESUMEN
OBJECTIVE: The objective of this study was to evaluate the relationship between blood levels of adiponectin and leptin with lean body and trunk adipose mass in women with and without type 2 diabetes mellitus (T2DM). METHODS: This cross-sectional study analyzed baseline data from five previous clinical studies involving postmenopausal women (nâ=â95). Body composition was assessed by dual-energy x-ray absorptiometry, and appendicular lean mass was calculated based on body mass index (ALMBMI). Adipokines and cytokines were measured by enzyme-linked immunosorbent assay. Linear mixed-effect models with a random study effect were used to investigate the relationship between predictors (eg, adiponectin, leptin), outcomes (eg, ALMBMI, trunk adipose mass), and co-variables (T2DM status, age, interleukin-6, and C-reactive protein). RESULTS: Postmenopausal women with T2DM had lower ALMBMI than those without T2DM. There was a positive association between blood adiponectin and ALMBMI in postmenopausal women without T2DM, but no association in those with T2DM. Blood leptin was negatively associated with ALMBMI for women regardless of T2DM diagnosis. Blood adiponectin was negatively associated, whereas blood leptin was positively associated with trunk adipose mass for the entire cohort. CONCLUSIONS: T2DM status moderated the relationship between blood adiponectin and ALMBMI, where blood adiponectin was positively associated with ALMBMI in postmenopausal women without T2DM, but not those with T2DM. Dysregulated metabolism in T2DM may contribute to lower muscle mass in women with T2DM, but future research is required to elucidate this mechanistic link. The negative association between blood leptin and ALMBMI was a novel finding. Future studies will need to more clearly define the relationship between these variables.