Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 18(9): 1547-1557, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37486544

RESUMEN

PURPOSE: During minimally invasive surgery, surgeons maneuver tools through complex anatomies, which is difficult without the ability to control the position of the tools inside the body. A potential solution for a substantial portion of these procedures is the efficient design and control of a pneumatically actuated soft robot system. METHODS: We designed and evaluated a system to control a steerable catheter tip. A macroscale 3D printed catheter tip was designed to have two separately pressurized channels to induce bending in two directions. A motorized hand controller was developed to allow users to control the bending angle while manually inserting the steerable tip. Preliminary characterization of two catheter tip prototypes was performed and used to map desired angle inputs into pressure commands. RESULTS: The integrated robotic system allowed both a novice and a skilled surgeon to position the steerable catheter tip at the location of cylindrical targets with sub-millimeter accuracy. The novice was able to reach each target within ten seconds and the skilled surgeon within five seconds on average. CONCLUSION: This soft robotic system enables its user to simultaneously insert and bend the pneumatically actuated catheter tip with high accuracy and in a short amount of time. These results show promise concerning the development of a soft robotic system that can improve outcomes in minimally invasive interventions.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Diseño de Equipo , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Catéteres , Procedimientos Quirúrgicos Robotizados/métodos
2.
Adv Mater Technol ; 8(5)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37064271

RESUMEN

Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 µm inner diameters, 50 µm outer diameters, and 550 µm heights, and arrayed with 100 µm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA