RESUMEN
Background: The presence of left ventricular (LV) wall motion abnormalities (WMA) is an independent indicator of adverse cardiovascular events in patients with cardiovascular diseases. We develop and evaluate the ability to detect cardiac wall motion abnormalities (WMA) from dynamic volume renderings (VR) of clinical 4D computed tomography (CT) angiograms using a deep learning (DL) framework. Methods: Three hundred forty-three ECG-gated cardiac 4DCT studies (age: 61 ± 15, 60.1% male) were retrospectively evaluated. Volume-rendering videos of the LV blood pool were generated from 6 different perspectives (i.e., six views corresponding to every 60-degree rotation around the LV long axis); resulting in 2058 unique videos. Ground-truth WMA classification for each video was performed by evaluating the extent of impaired regional shortening visible (measured in the original 4DCT data). DL classification of each video for the presence of WMA was performed by first extracting image features frame-by-frame using a pre-trained Inception network and then evaluating the set of features using a long short-term memory network. Data were split into 60% for 5-fold cross-validation and 40% for testing. Results: Volume rendering videos represent ~800-fold data compression of the 4DCT volumes. Per-video DL classification performance was high for both cross-validation (accuracy = 93.1%, sensitivity = 90.0% and specificity = 95.1%, κ: 0.86) and testing (90.9, 90.2, and 91.4% respectively, κ: 0.81). Per-study performance was also high (cross-validation: 93.7, 93.5, 93.8%, κ: 0.87; testing: 93.5, 91.9, 94.7%, κ: 0.87). By re-binning per-video results into the 6 regional views of the LV we showed DL was accurate (mean accuracy = 93.1 and 90.9% for cross-validation and testing cohort, respectively) for every region. DL classification strongly agreed (accuracy = 91.0%, κ: 0.81) with expert visual assessment. Conclusions: Dynamic volume rendering of the LV blood pool combined with DL classification can accurately detect regional WMA from cardiac CT.
RESUMEN
BACKGROUND: Cardiac resynchronization therapy (CRT) is an effective treatment for patients with heart failure; however, 30% of patients do not respond to the treatment. We sought to derive patient-specific left ventricle maps of lead placement scores (LPS) that highlight target pacing lead sites for achieving a higher probability of CRT response. METHODS: Eighty-two subjects recruited for the ImagingCRT trial (Empiric Versus Imaging Guided Left Ventricular Lead Placement in Cardiac Resynchronization Therapy) were retrospectively analyzed. All 82 subjects had 2 contrast-enhanced full cardiac cycle 4-dimensional computed tomography scans: a baseline and a 6-month follow-up scan. CRT response was defined as a reduction in computed tomography-derived end-systolic volume ≥15%. Eight left ventricle features derived from the baseline scans were used to train a support vector machine via a bagging approach. An LPS map over the left ventricle was created for each subject as a linear combination of the support vector machine feature weights and the subject's own feature vector. Performance for distinguishing responders was performed on the original 82 subjects. RESULTS: Fifty-two (63%) subjects were responders. Subjects with an LPS≤Q1 (lower-quartile) had a posttest probability of responding of 14% (3/21), while subjects with an LPS≥ Q3 (upper-quartile) had a posttest probability of responding of 90% (19/21). Subjects with Q1Asunto(s)
Terapia de Resincronización Cardíaca
, Insuficiencia Cardíaca
, Ensayos Clínicos como Asunto
, Insuficiencia Cardíaca/diagnóstico por imagen
, Insuficiencia Cardíaca/terapia
, Humanos
, Lipopolisacáridos
, Estudios Prospectivos
, Estudios Retrospectivos
, Tomografía
, Resultado del Tratamiento
, Función Ventricular Izquierda
RESUMEN
BACKGROUND: Estimates of regional left ventricular (LV) strains provide additional information to global function parameters such as ejection fraction (EF) and global longitudinal strain (GLS) and are more sensitive in detecting abnormal regional cardiac function. The accurate and reproducible assessment of regional cardiac function has implications in the management of various cardiac diseases such as heart failure, myocardial ischemia, and dyssynchrony. PURPOSE: To develop a method that yields highly reproducible, high-resolution estimates of regional endocardial strains from 4DCT images. METHODS: A method for estimating regional LV endocardial circumferential ( ε c c ) $( {{\epsilon }_{cc}} )$ and longitudinal ( ε l l ${\epsilon }_{ll}$ ) strains from 4DCT was developed. Point clouds representing the LV endocardial surface were extracted for each time frame of the cardiac cycle from 4DCT images. 3D deformation fields across the cardiac cycle were obtained by registering the end diastolic point cloud to each subsequent point cloud in time across the cardiac cycle using a 3D point-set registration technique. From these deformation fields, ε c c and ε l l ${\epsilon }_{cc}\ {\rm{and\ }}{\epsilon }_{ll}$ were estimated over the entire LV endocardial surface by fitting an affine transformation with maximum likelihood estimation. The 4DCT-derived strains were compared with strains estimated in the same subjects by cardiac magnetic resonance (CMR); twenty-four subjects had CMR scans followed by 4DCT scans acquired within a few hours. Regional LV circumferential and longitudinal strains were estimated from the CMR images using a commercially available feature tracking software (cvi42). Global circumferential strain (GCS) and global longitudinal strain (GLS) were calculated as the mean of the regional strains across the entire LV for both modalities. Pearson correlation coefficients and Bland-Altman analyses were used for comparisons. Intraclass correlation coefficients (ICC) were used to assess the inter- and intraobserver reproducibility of the 4DCT-derived strains. RESULTS: The 4DCT-derived regional strains correlated well with the CMR-derived regional strains ( ε c c ${\epsilon }_{cc}$ : r = 0.76, p < 0.001; ε l l ${\epsilon }_{ll}$ : r = 0.64, p < 0.001). A very strong correlation was found between 4DCT-derived GCS and 4DCT-derived EF (r = -0.96; p < 0.001). The 4DCT-derived strains were also highly reproducible, with very low inter- and intraobserver variability (intraclass correlation coefficients in the range of [0.92, 0.99]). CONCLUSIONS: We have developed a novel method to estimate high-resolution regional LV endocardial circumferential and longitudinal strains from 4DCT images. Except for the definition of the mitral valve and LV outflow tract planes, the method is completely user independent, thus yielding highly reproducible estimates of endocardial strain. The 4DCT-derived strains correlated well with those estimated using a commercial CMR feature tracking software. The promising results reported in this study highlight the potential utility of 4DCT in the precise assessment of regional cardiac function for the management of cardiac disease.
Asunto(s)
Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Imagen por Resonancia Cinemagnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Regional left ventricular (LV) mechanics in mitral regurgitation (MR) patients, and local changes in function after transcatheter mitral valve implantation (TMVI) have yet to be evaluated. Herein, we introduce a method for creating high resolution maps of endocardial function from 4DCT images, leading to detailed characterization of changes in local LV function. These changes are particularly interesting when evaluating the effect of the Tendyne™ TMVI device in the region of the epicardial pad. METHODS: Regional endocardial shortening from CT (RSCT) was evaluated in Tendyne (Abbott Medical) TMVI patients with 4DCT exams pre- and post-implantation. Regional function was evaluated in 90 LV segments (5 longitudinal × 18 circumferential). LV volumes and ejection fraction (EF) were also computed. A reproducibility study was performed in a subset of patients to determine the precision of RSCT measurements in this population. RESULTS: Baseline and local changes in RSCT post TMVI were highly variable and extremely spatially heterogeneous. Both inter- and intra-observer variability were low and demonstrated the high precision of RSCT for evaluating regional LV function. CONCLUSION: RSCT is a reproducible metric which can be evaluated in patients with highly abnormal regional LV function and geometry. After TMVI, significant spatially heterogeneous changes in RSCT were observed in all subjects; therefore, it is unlikely that the functional state of TMVI patients can be fully described by changes in LV volume or EF. Measurement of RSCT provides precise characterization of the spatially heterogeneous effects of MR and TMVI on LV function and remodeling.
RESUMEN
We present an anthropomorphically accurate left ventricular (LV) phantom derived from human computed tomography (CT) data to serve as the ground truth for the optimization and the spatial resolution quantification of a CT-derived regional strain metric (SQUEEZ) for the detection of regional wall motion abnormalities. Displacements were applied to the mesh points of a clinically derived end-diastolic LV mesh to create analytical end-systolic poses with physiologically accurate endocardial strains. Normal function and regional dysfunction of four sizes [1, 2/3, 1/2, and 1/3 American Heart Association (AHA) segments as core diameter], each exhibiting hypokinesia (70% reduction in strain) and subtle hypokinesia (40% reduction in strain), were simulated. Regional shortening ( RS CT ) estimates were obtained by registering the end-diastolic mesh to each simulated end-systolic mesh condition using a nonrigid registration algorithm. Ground-truth models of normal function and of hypokinesia were used to identify the optimal parameters in the registration algorithm and to measure the accuracy of detecting regional dysfunction of varying sizes and severities. For normal LV function, RS CT values in all 16 AHA segments were accurate to within ± 5 % . For cases with regional dysfunction, the errors in RS CT around the dysfunctional region increased with decreasing size of dysfunctional tissue.
RESUMEN
We present a method to leverage the high fidelity of computed tomography (CT) to quantify regional left ventricular function using topography variation of the endocardium as a surrogate measure of strain. 4DCT images of 10 normal and 10 abnormal subjects, acquired with standard clinical protocols, are used. The topography of the endocardium is characterized by its regional values of fractal dimension ( F D ), computed using a box-counting algorithm developed in-house. The average F D in each of the 16 American Heart Association segments is calculated for each subject as a function of time over the cardiac cycle. The normal subjects show a peak systolic percentage change in F D of 5.9 % ± 2 % in all free-wall segments, whereas the abnormal cohort experiences a change of 2 % ± 1.2 % ( p < 0.00001 ). Septal segments, being smooth, do not undergo large changes in F D . Additionally, a principal component analysis is performed on the temporal profiles of F D to highlight the possibility for unsupervised classification of normal and abnormal function. The method developed is free from manual contouring and does not require any feature tracking or registration algorithms. The F D values in the free-wall segments correlated well with radial strain and with endocardial regional shortening measurements.