Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 375(9): 819-29, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27433843

RESUMEN

BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Asunto(s)
Resistencia a Antineoplásicos/genética , Inmunoterapia , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Melanoma/genética , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microglobulina beta-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Biopsia , Exoma , Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , Humanos , Interferón gamma/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/secundario , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Análisis de Secuencia de ADN , Transducción de Señal
2.
Cancer Med ; 13(9): e7212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686626

RESUMEN

BACKGROUND: A phase I clinical study for patients with locally advanced H&N cancer with a new class of botanical drug APG-157 provided hints of potential synergy with immunotherapy. We sought to evaluate the efficacy of the combination of APG-157 and immune checkpoint inhibitors. METHODS: CCL23, UM-SCC1 (human), and SCCVII (HPV-), MEER (HPV+) (murine) H&N cancer cell lines were utilized for in vitro and in vivo studies. We measured tumor growth by treating the mice with APG-157, anti-PD-1, and anti-CTLA-4 antibody combinations (8 groups). The tumor microenvironments were assessed by multi-color flow cytometry, immunohistochemistry, and RNA-seq analysis. Fecal microbiome was analyzed by 16S rRNA sequence. RESULTS: Among the eight treatment groups, APG-157 + anti-CTLA-4 demonstrated the best tumor growth suppression (p = 0.0065 compared to the control), followed by anti-PD-1 + anti-CTLA-4 treatment group (p = 0.48 compared to the control). Immunophenotype showed over 30% of CD8+ T cells in APG-157 + anti-CTLA-4 group compared to 4%-5% of CD8+ T cells for the control group. Differential gene expression analysis revealed that APG-157 + anti-CTLA-4 group showed an enriched set of genes for inflammatory response and apoptotic signaling pathways. The fecal microbiome analysis showed a substantial difference of lactobacillus genus among groups, highest for APG-157 + anti-CTLA-4 treatment group. We were unable to perform correlative studies for MEER model as there was tumor growth suppression with all treatment conditions, except for the untreated control group. CONCLUSIONS: The results indicate that APG-157 and immune checkpoint inhibitor combination treatment could potentially lead to improved tumor control.


Asunto(s)
Antígeno CTLA-4 , Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Animales , Ratones , Antígeno CTLA-4/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Humanos , Femenino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Modelos Animales de Enfermedad
3.
Proc Natl Acad Sci U S A ; 107(32): 14286-91, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20624956

RESUMEN

A key issue in advancing the use of adoptive cell transfer (ACT) of T cell receptor (TCR) engineered lymphocytes for cancer therapy is demonstrating how TCR transgenic cells repopulate lymphopenic hosts and target tumors in an antigen-specific fashion. ACT of splenocytes from fully immunocompetent HLA-A2.1/K(b) mice transduced with a chimeric murine/human TCR specific for tyrosinase, together with lymphodepletion conditioning, dendritic cell (DC)-based vaccination, and high-dose interleukin-2 (IL-2), had profound antitumor activity against large established MHC- and antigen-matched tumors. Genetic labeling with bioluminescence imaging (BLI) and positron emitting tomography (PET) reporter genes allowed visualization of the distribution and antigen-specific tumor homing of TCR transgenic T cells, with trafficking correlated with antitumor efficacy. After an initial brief stage of systemic distribution, TCR-redirected and genetically labeled T cells demonstrated an early pattern of specific distribution to antigen-matched tumors and locoregional lymph nodes, followed by a more promiscuous distribution 1 wk later with additional accumulation in antigen-mismatched tumors. This approach of TCR engineering and molecular imaging reporter gene labeling is directly translatable to humans and provides useful information on how to clinically develop this mode of therapy.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Ingeniería de Proteínas/métodos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Animales , Quimiotaxis de Leucocito , Genes Reporteros , Humanos , Cinética , Ratones , Monofenol Monooxigenasa/inmunología , Neoplasias/terapia , Linfocitos T/trasplante , Distribución Tisular
4.
Cells ; 12(2)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36672230

RESUMEN

Humoral immune response is important in fighting pathogens by the production of specific antibodies by B cells. In germinal centers, T follicular helper (TFH) cells provide important help to B-cell antibody production but also contribute to HIV persistence. T follicular regulatory (TFR) cells, which inhibit the function of TFH cells, express similar surface markers. Since FOXP3 is the only marker that distinguishes TFR from TFH cells it is unknown whether the increase in TFH cells observed in HIV infection and HIV persistence may be partly due to an increase in TFR cells. Using multicolor flow cytometry to detect TFH and TFR cells in cryopreserved peripheral blood mononuclear cells from HIV-infected and non-infected participants in the UCLA Multicenter AIDS Cohort Study (MACS), we identified CD3+CXCR5+CD4+CD8-BCL6+ peripheral blood TFH (pTFH) cells and CD3+CXCR5+CD4+CD8-FOXP3+ peripheral blood TFR (pTFR) cells. Unlike TFR cells in germinal centers, pTFR cells do not express B cell lymphoma 6 (BCL6), a TFH cell master transcriptional regulator. Our major findings are that the frequency of pTFH cells, but not pTFR cells was higher in HIV-infected participants of the MACS and that pTFH cells expressed less CCR5 in HIV-infected MACS participants. Constitutive expression of CCR5 in TFR cells supports their potential to contribute to HIV persistence.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Células T Auxiliares Foliculares/metabolismo , Infecciones por VIH/metabolismo , Linfocitos T Colaboradores-Inductores , Estudios de Cohortes , Leucocitos Mononucleares/metabolismo , Síndrome de Inmunodeficiencia Adquirida/metabolismo , Factores de Transcripción Forkhead/metabolismo
5.
Cancer Immunol Res ; 11(12): 1642-1655, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801341

RESUMEN

ß2-microglobulin (B2M) is a critical component of the MHC class I molecule and is required to present tumor antigens to T cells. Its loss results in acquired resistance to immune checkpoint blockade (ICB) therapies. However, there have been well-documented cases of B2M-inactivated tumors responding to ICB, justifying investigation of how an antitumor immune response can be generated to tumors without surface MHC class I. We knocked out B2M in three murine models with varying baseline MHC class I expression and sensitivity to anti-programmed death receptor (PD-1) therapy and analyzed the immune responses. MC38 and YUMMER2.1 without B2M responded to anti-PD-1 alone or with an IL2 agonist, and this was mediated by CD4+ T cells and natural killer (NK) cells. The more aggressive B16 without B2M expression only partially responded to the IL2 agonist, and this was dependent on NK cells. When analyzing nearly 300 pretreatment biopsies from patients with melanoma receiving PD-1 blockade-based therapies, we found infrequent B2M mutations or homozygous loss but more frequent LOH or copy-number gains. B2M LOH was enriched in biopsies from patients without response to therapy, and these biopsies were more frequently infiltrated by activated NK cells. We conclude that in the absence of B2M, activation of CD4+ T cells and NK cells can mediate responses to murine models of PD-1 blockade therapy. In addition, in human melanoma, the intratumoral presence of activated NK cells upon partial B2M loss likely selects against tumor escape through low surface MHC class I expression.


Asunto(s)
Interleucina-2 , Melanoma , Humanos , Animales , Ratones , Interleucina-2/genética , Interleucina-2/farmacología , Receptor de Muerte Celular Programada 1 , Antígenos de Histocompatibilidad Clase I , Inmunidad
6.
J Immunother Cancer ; 11(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156551

RESUMEN

BACKGROUND: The tumor antigen NY-ESO-1 has been shown to be an effective target for transgenic adoptive cell therapy (ACT) for the treatment of sarcoma and melanoma. However, despite frequent early clinical responses, many patients ultimately develop progressive disease. Understanding the mechanisms underlying treatment resistance is crucial to improve future ACT protocols. Here, we describe a novel mechanism of treatment resistance in sarcoma involving loss of expression of NY-ESO-1 in response to transgenic ACT with dendritic cell (DC) vaccination and programmed cell death protein-1 (PD-1) blockade. METHODS: A HLA-A*02:01-positive patient with an NY-ESO-1-positive undifferentiated pleomorphic sarcoma was treated with autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes, NY-ESO-1 peptide-pulsed DC vaccination, and nivolumab-mediated PD-1 blockade. RESULTS: Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. There was initial tumor regression, and immunophenotyping of the peripheral transgenic T cells showed a predominantly effector memory phenotype over time. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsy via both TCR sequencing-based and RNA sequencing-based immune reconstitution, and nivolumab binding to PD-1 on transgenic T cells was confirmed at the tumor site. At the time of disease progression, the promoter region of NY-ESO-1 was found to be extensively methylated, and tumor NY-ESO-1 expression was completely lost as measured by RNA sequencing and immunohistochemistry. CONCLUSIONS: ACT of NY-ESO-1 transgenic T cells given with DC vaccination and anti-PD-1 therapy resulted in transient antitumor activity. NY-ESO-1 expression was lost in the post-treatment sample in the setting of extensive methylation of the NY-ESO-1 promoter region. BIOLOGICAL/CLINICAL INSIGHT: Antigen loss represents a novel mechanism of immune escape in sarcoma and a new point of improvement in cellular therapy approaches. TRIAL REGISTRATION NUMBER: NCT02775292.


Asunto(s)
Melanoma , Sarcoma , Humanos , Nivolumab , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
7.
Cancer Immunol Res ; 11(12): 1589-1597, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871333

RESUMEN

Transgenic T-cell receptor (TCR) T cell-based adoptive cell therapies for solid tumors are associated with dramatic initial response rates, but there remain many instances of treatment failure and disease relapse. The association of infusion product cytokine profiles with clinical response has not been explored in the context of TCR T-cell therapy products. Single-cell antigen-dependent secretomic and proteomic analysis of preinfusion clinical TCR T-cell therapy products revealed that TNFα cytokine functionality of CD8+ T cells and phospho-STAT3 signaling in these cells were both associated with superior clinical responsiveness to therapy. By contrast, CD4+ T-helper 2 cell cytokine profiles were associated with inferior clinical responses. In parallel, preinfusion levels of IL15, Flt3-L, and CX3CL1 were all found to be associated with clinical response to therapy. These results have implications for the development of therapeutic biomarkers and identify potential targets for enrichment in the design of transgenic TCR T-cell therapies for solid tumors.


Asunto(s)
Neoplasias , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Proteómica , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Citocinas , Animales Modificados Genéticamente , Tratamiento Basado en Trasplante de Células y Tejidos , Ratones Transgénicos , Factor de Transcripción STAT3
8.
Front Immunol ; 13: 833636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185925

RESUMEN

The establishment of an "interferon (IFN) signature" to subset SLE patients on disease severity has led to therapeutics targeting IFNα. Here, we investigate IFN signaling in SLE using multiplexed protein arrays and single cell cytometry by time of flight (CyTOF). First, the IFN signature for SLE patients (n=81) from the Stanford Lupus Registry is determined using fluidigm qPCR measuring 44 previously determined IFN-inducible transcripts. IFN-high (IFN-H) patients have increased SLE criteria and renal/CNS/immunologic involvement, and increased autoantibody reactivity against spliceosome-associated antigens. CyTOF analysis is performed on non-stimulated and stimulated (IFNα, IFNγ, IL-21) PBMCs from SLE patients (n=25) and HCs (n=9) in a panel identifying changes in phosphorylation of intracellular signaling proteins (pTOF). Another panel is utilized to detect changes in intracellular cytokine (ICTOF) production in non-stimulated and stimulated (PMA/ionomycin) PBMCs from SLE patients (n=31) and HCs (n=17). Bioinformatic analysis by MetaCyto and OMIQ reveal phenotypic changes in immune cell subsets between IFN-H and IFN-low (IFN-L) patients. Most notably, IFN-H patients exhibit increased STAT1/3/5 phosphorylation downstream of cytokine stimulation and increased phosphorylation of non-canonical STAT proteins. These results suggest that IFN signaling in SLE modulates STAT phosphorylation, potentially uncovering possible targets for future therapeutic approaches.


Asunto(s)
Interferón Tipo I/fisiología , Interleucinas/fisiología , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Factor de Transcripción STAT1/metabolismo , Adulto , Femenino , Citometría de Flujo , Humanos , Interferón Tipo I/análisis , Interleucinas/análisis , Masculino , Persona de Mediana Edad , Fosforilación , Transducción de Señal , Análisis de la Célula Individual
9.
Cancer Res Commun ; 2(10): 1214-1228, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36588582

RESUMEN

PAK4 inhibition can sensitize tumors to immune checkpoint blockade (ICB) therapy, however, the underlying mechanisms remain unclear. We report that PAK4 inhibition reverses immune cell exclusion by increasing the infiltration of CD8 T cells and CD103+ dendritic cells (DCs), a specific type of DCs that excel at cross-presenting tumor antigens and constitute a source of CXCL10. Interestingly, in melanoma clinical datasets, PAK4 expression levels negatively correlate with the presence of CCL21, the ligand for CCR7 expressed in CD103+ DCs. Furthermore, we extensively characterized the transcriptome of PAK4 knock out (KO) tumors, in vitro and in vivo, and established the importance of PAK4 expression in the regulation of the extracellular matrix, which can facilitate immune cell infiltration. Comparison between PAK4 wild type (WT) and KO anti-PD-1 treated tumors revealed how PAK4 deletion sensitizes tumors to ICB from a transcriptomic perspective. In addition, we validated genetically and pharmacologically that inhibition of PAK4 kinase activity is sufficient to improve anti-tumor efficacy of anti-PD-1 blockade in multiple melanoma mouse models. Therefore, this study provides novel insights into the mechanism of action of PAK4 inhibition and provides the foundation for a new treatment strategy that aims to overcome resistance to PD-1 blockade by combining anti-PD-1 with a small molecule PAK4 kinase inhibitor.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Microambiente Tumoral/genética , Linfocitos T CD8-positivos , Melanoma/tratamiento farmacológico , Antígenos de Neoplasias/farmacología
10.
PLoS One ; 16(6): e0252597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161353

RESUMEN

Wound healing is a multi-step process to rapidly restore the barrier function. This process is often impaired in diabetic patients resulting in chronic wounds and amputation. We previously found that paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway via topical administration of the BRAF inhibitor vemurafenib accelerates wound healing by activating keratinocyte proliferation and reepithelialization pathways in healthy mice. Herein, we investigated whether this wound healing acceleration also occurs in impaired diabetic wounds and found that topical vemurafenib not only improves wound healing in a murine diabetic wound model but unexpectedly promotes hair follicle regeneration. Hair follicles expressing Sox-9 and K15 surrounded by CD34+ stroma were found in wounds of diabetic and non-diabetic mice, and their formation can be prevented by blocking downstream MEK signaling. Thus, topically applied BRAF inhibitors may accelerate wound healing, and promote the restoration of improved skin architecture in both normal and impaired wounds.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Diabetes Mellitus Experimental/patología , Femenino , Folículo Piloso/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Obesos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Piel/patología , Vemurafenib/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
11.
J Transl Med ; 8: 39, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20406486

RESUMEN

Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 muM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 muM, and three were moderately sensitive with IC50 values between 1 and 10 muM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity.


Asunto(s)
Indoles/farmacología , Melanoma/genética , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Sustitución de Aminoácidos/genética , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diagnóstico por Imagen , Resistencia a Antineoplásicos/efectos de los fármacos , Genoma Humano/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/enzimología , Melanoma/patología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vemurafenib
12.
J Immunol ; 181(2): 1063-70, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18606658

RESUMEN

Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4(+) T cells. Considering the difficulties in simultaneously engaging CD4(+) and CD8(+) T cells in tumor immunotherapy, especially in an Ag-specific manner, redirecting CD4(+) T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope-specific TCRs in CD4(+) T cells has emerged as a strategic consideration. Such TCR-engineered CD4(+) T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have conducted a critical examination of functional characteristics of CD4(+) T cells engineered to express the alpha- and beta-chains of a high functional avidity TCR specific for the melanoma epitope, MART-1(27-35), as a prototypic human tumor Ag system. We found that unpolarized CD4(+)CD25(-) T cells engineered to express the MART-1(27-35) TCR selectively synthesize Th1 cytokines and exhibit a potent Ag-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8(+) CTL. Such TCR engineered CD4(+) T cells, therefore, might be useful in clinical immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Citotoxicidad Inmunológica , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Melanoma/inmunología , Proteínas de Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Células TH1/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Citocinas/inmunología , Epítopos/metabolismo , Vectores Genéticos , Humanos , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células TH1/metabolismo , Transducción Genética , Transgenes
13.
Clin Cancer Res ; 15(1): 390-9, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19118070

RESUMEN

PURPOSE: CTL-associated antigen 4 (CTLA4)-blocking monoclonal antibodies induce long-term regression of metastatic melanoma in some patients, but the exact mechanism is unknown. In this study, biopsies of selected accessible tumor lesions from patients treated with tremelimumab were examined to further elucidate the mechanism of its antitumor activity. EXPERIMENTAL DESIGN: Fifteen tumor biopsies from 7 patients who had been treated with tremelimumab (CP-675,206) were collected. Samples were analyzed for melanoma markers, immune cell subset markers, the presence of the T regulatory-specific transcription factor FoxP3 and the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO). RESULTS: Clinically responding lesions had diffuse intratumoral infiltrates of CD8(+) T cells that were markedly increased in cases where comparison with a baseline biopsy was available. Nonregressing lesions had sparse, patchy CD8(+) intratumoral infiltrates. Patients with regressing lesions had an increased frequency of CD8(+) cells with or without a concomitant increase in CD4(+) cells. Two of 3 responding patients with paired samples showed a slight increase in the number of FoxP3(+) cells in the postdosing biopsies. In patients with regressing lesions who had paired samples, the intensity of IDO staining in macrophages and/or melanoma cells showed no clear pattern of change postdosing. CONCLUSIONS: Administration of tremelimumab was associated with massive intratumoral infiltrates of CD8(+) CTLs in patients with regressing tumors but had varying effects on intratumoral infiltrates of CD4(+) and FoxP3(+) cells or intratumoral expression of IDO.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/inmunología , Factores de Transcripción Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Linfocitos T Citotóxicos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Biopsia , Linfocitos T CD4-Positivos/inmunología , Antígeno CTLA-4 , Femenino , Humanos , Masculino , Melanoma/inmunología , Melanoma/terapia , Persona de Mediana Edad
14.
Cancer Discov ; 10(11): 1645-1653, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32699033

RESUMEN

Transgenic T-cell receptor (TCR) adoptive cell therapies recognizing tumor antigens are associated with robust initial response rates, but frequent disease relapse. This usually occurs in the setting of poor long-term persistence of cells expressing the transgenic TCR, generated using murine stem cell virus (MSCV) γ-retroviral vectors. Analysis of clinical transgenic adoptive cell therapy products in vivo revealed that despite strong persistence of the transgenic TCR DNA sequence over time, its expression was profoundly decreased over time at the RNA and protein levels. Patients with the greatest degrees of expression suppression displayed significant increases in DNA methylation over time within the MSCV promoter region, as well as progressive increases in DNA methylation within the entire MSCV vector over time. These increases in vector methylation occurred independently of its integration site within the host genomes. These results have significant implications for the design of future viral vector gene-engineered adoptive cell transfer therapies. SIGNIFICANCE: Cellular immunotherapies' reliance on retroviral vectors encoding foreign genetic material can be vulnerable to progressive acquisition of DNA methylation and subsequent epigenetic suppression of the transgenic product in TCR adoptive cell therapy. This must be considered in the design of future generations of cellular immunotherapies for cancer.This article is highlighted in the In This Issue feature, p. 1611.


Asunto(s)
Epigénesis Genética/genética , Vectores Genéticos/genética , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción Genética/métodos , Humanos
15.
J Immunother ; 43(9): 273-282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925563

RESUMEN

Expression of carbonic-anhydrase IX (CAIX) in clear cell renal cell carcinoma (RCC) makes it an attractive vaccine target. We developed a fusion-gene construct, granulocyte-macrophage (GM) colony-stimulating factor+CAIX, delivered by an adenoviral vector (Ad) into autologous dendritic cells (DCs) in this phase 1 study. The injected immature DCs were expected to stimulate an antigen-specific immune response against CAIX expressing RCC. Three dose-escalation cohorts (5, 15, and 50×10 cells/administration) were injected intradermally q2wk×3 doses based on a 3+3 design. The primary objective was the safety of the injections. Secondary objectives were immune responses using enzyme-linked immunosorbent spot, a serum biomarker panel, and clinical response. Fifteen patients with metastatic RCC were enrolled, and 9 patients received all 3 doses. No serious adverse events were seen. There were 3 (33%) patients with grade 1 fatigue, 1 of whom subsequently experienced grade 2 fatigue. One patient (11%) experienced grade 1-2 leukopenia. Only 1 patient (11%) experienced grade 2 flu-like symptoms. Of the 9 patients who received treatment, 1 expired of progressive disease, 2 patients were lost to follow-up and 6 patients are alive. Of the 6 patients, 5 have progressive disease, and 1 has completed treatment with stable disease at 27 months follow-up. Immune response measurements appeared more robust in higher dose cohorts, which appeared to be related to patients with stable disease at 3 months. These early data show that autologous immature DC-AdGMCAIX can be safely given to metastatic RCC patients without any serious adverse events with CAIX-specific immune response elicited by the treatment. These preliminary data support further study of Ad-GMCAIX, particularly with combination therapies that may enhance clinical activity.


Asunto(s)
Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/administración & dosificación , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/terapia , Células Dendríticas/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Neoplasias Renales/terapia , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/metabolismo , Anhidrasa Carbónica IX/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Células Dendríticas/metabolismo , Manejo de la Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Resultado del Tratamiento
16.
Nat Cancer ; 1(1): 46-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34368780

RESUMEN

Lack of tumor infiltration by immune cells is the main mechanism of primary resistance to programmed cell death protein 1 (PD-1) blockade therapies for cancer. It has been postulated that cancer cell-intrinsic mechanisms may actively exclude T cells from tumors, suggesting that the finding of actionable molecules that could be inhibited to increase T cell infiltration may synergize with checkpoint inhibitor immunotherapy. Here, we show that p21-activated kinase 4 (PAK4) is enriched in non-responding tumor biopsies with low T cell and dendritic cell infiltration. In mouse models, genetic deletion of PAK4 increased T cell infiltration and reversed resistance to PD-1 blockade in a CD8 T cell-dependent manner. Furthermore, combination of anti-PD-1 with the PAK4 inhibitor KPT-9274 improved anti-tumor response compared with anti-PD-1 alone. Therefore, high PAK4 expression is correlated with low T cell and dendritic cell infiltration and a lack of response to PD-1 blockade, which could be reversed with PAK4 inhibition.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , Receptor de Muerte Celular Programada 1 , Quinasas p21 Activadas , Animales , Linfocitos T CD8-positivos , Ratones , Neoplasias/tratamiento farmacológico , Quinasas p21 Activadas/genética
17.
Cancer Discov ; 10(8): 1140-1157, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32467343

RESUMEN

Mechanism-based strategies to overcome resistance to PD-1 blockade therapy are urgently needed. We developed genetic acquired resistant models of JAK1, JAK2, and B2M loss-of-function mutations by gene knockout in human and murine cell lines. Human melanoma cell lines with JAK1/2 knockout became insensitive to IFN-induced antitumor effects, while B2M knockout was no longer recognized by antigen-specific T cells and hence was resistant to cytotoxicity. All of these mutations led to resistance to anti-PD-1 therapy in vivo. JAK1/2-knockout resistance could be overcome with the activation of innate and adaptive immunity by intratumoral Toll-like receptor 9 agonist administration together with anti-PD-1, mediated by natural killer (NK) and CD8 T cells. B2M-knockout resistance could be overcome by NK-cell and CD4 T-cell activation using the CD122 preferential IL2 agonist bempegaldesleukin. Therefore, mechanistically designed combination therapies can overcome genetic resistance to PD-1 blockade therapy. SIGNIFICANCE: The activation of IFN signaling through pattern recognition receptors and the stimulation of NK cells overcome genetic mechanisms of resistance to PD-1 blockade therapy mediated through deficient IFN receptor and antigen presentation pathways. These approaches are being tested in the clinic to improve the antitumor activity of PD-1 blockade therapy.This article is highlighted in the In This Issue feature, p. 1079.


Asunto(s)
Resistencia a Antineoplásicos/genética , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microglobulina beta-2/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Interferones/farmacología , Interleucina-2/análogos & derivados , Interleucina-2/inmunología , Interleucina-2/farmacología , Interleucina-2/uso terapéutico , Células Asesinas Naturales/inmunología , Mutación con Pérdida de Función , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Receptor Toll-Like 9/inmunología
18.
Nat Commun ; 11(1): 660, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005809

RESUMEN

Interleukin-2 (IL-2) is a component of most protocols of adoptive cell transfer (ACT) therapy for cancer, but is limited by short exposure and high toxicities. NKTR-214 is a kinetically-engineered IL-2 receptor ßγ (IL-2Rßγ)-biased agonist consisting of IL-2 conjugated to multiple releasable polyethylene glycol chains resulting in sustained signaling through IL-2Rßγ. We report that ACT supported by NKTR-214 increases the proliferation, homing and persistence of anti-tumor T cells compared to ACT with IL-2, resulting in superior antitumor activity in a B16-F10 murine melanoma model. The use of NKTR-214 increases the number of polyfunctional T cells in murine spleens and tumors compared to IL-2, and enhances the polyfunctionality of T and NK cells in the peripheral blood of patients receiving NKTR-214 in a phase 1 trial. In conclusion, NKTR-214 may have the potential to improve the antitumor activity of ACT in humans through increased in vivo expansion and polyfunctionality of the adoptively transferred T cells.


Asunto(s)
Traslado Adoptivo , Interleucina-2/análogos & derivados , Interleucina-2/agonistas , Melanoma/tratamiento farmacológico , Polietilenglicoles/administración & dosificación , Receptores de Interleucina-2/inmunología , Linfocitos T/inmunología , Animales , Humanos , Interleucina-2/administración & dosificación , Interleucina-2/inmunología , Activación de Linfocitos/efectos de los fármacos , Melanoma/genética , Melanoma/inmunología , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Receptores de Interleucina-2/genética
19.
Clin Cancer Res ; 25(7): 2096-2108, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573690

RESUMEN

PURPOSE: Transgenic adoptive cell therapy (ACT) targeting the tumor antigen NY-ESO-1 can be effective for the treatment of sarcoma and melanoma. Preclinical models have shown that this therapy can be improved with the addition of dendritic cell (DC) vaccination and immune checkpoint blockade. We studied the safety, feasibility, and antitumor efficacy of transgenic ACT with DC vaccination, with and without CTLA-4 blockade with ipilimumab. PATIENTS AND METHODS: Freshly prepared autologous NY-ESO-1-specific T-cell receptor (TCR) transgenic lymphocytes were adoptively transferred together with NY-ESO-1 peptide-pulsed DC vaccination in HLA-A2.1-positive subjects alone (ESO, NCT02070406) or with ipilimumab (INY, NCT01697527) in patients with advanced sarcoma or melanoma. RESULTS: Six patients were enrolled in the ESO cohort, and four were enrolled in the INY cohort. Four out of six patients treated per ESO (66%), and two out of four patients treated per INY (50%) displayed evidence of tumor regression. Peripheral blood reconstitution with NY-ESO-1-specific T cells peaked within 2 weeks of ACT, indicating rapid in vivo expansion. Tracking of transgenic T cells to the tumor sites was demonstrated in on-treatment biopsies via TCR sequencing. Multiparametric mass cytometry of transgenic cells demonstrated shifting of transgenic cells from memory phenotypes to more terminally differentiated effector phenotypes over time. CONCLUSIONS: ACT of fresh NY-ESO-1 transgenic T cells prepared via a short ex vivo protocol and given with DC vaccination, with or without ipilimumab, is feasible and results in transient antitumor activity, with no apparent clinical benefit of the addition of ipilimumab. Improvements are needed to maintain tumor responses.


Asunto(s)
Traslado Adoptivo , Antineoplásicos Inmunológicos/farmacología , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Ipilimumab/farmacología , Neoplasias/inmunología , Neoplasias/terapia , Traslado Adoptivo/métodos , Adulto , Animales , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Células Dendríticas/metabolismo , Femenino , Técnicas de Sustitución del Gen , Humanos , Inmunoterapia , Linfocitos/inmunología , Linfocitos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias/patología , Fenotipo , Proyectos Piloto , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Adulto Joven
20.
J Transl Med ; 6: 22, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18452610

RESUMEN

BACKGROUND: CTLA4-blocking antibodies induce tumor regression in a subset of patients with melanoma. Analysis of immune parameters in peripheral blood may help define how responses are mediated. METHODS: Peripheral blood from HLA-A*0201-positive patients with advanced melanoma receiving tremelimumab (formerly CP-675,206) at 10 mg/kg monthly was repeatedly sampled during the first 4 cycles. Samples were analyzed by 1) tetramer and ELISPOT assays for reactivity to CMV, EBV, MART1, gp100, and tyrosinase; 2) activation HLA-DR and memory CD45RO markers on CD4+/CD8+ cells; and 3) real-time quantitative PCR of mRNA for FoxP3 transcription factor, preferentially expressed by T regulatory cells. The primary endpoint was difference in MART1-specific T cells by tetramer assay. Immunological data were explored for significant trends using clustering analysis. RESULTS: Three of 12 patients eligible for immune monitoring had tumor regression lasting > 2 years without relapse. There was no significant change in percent of MART1-specific T cells by tetramer assay. Additionally, there was no generalized trend toward postdosing changes in other antigen-specific CD8+ cell populations, FoxP3 transcripts, or overall changes in surface expression of T-cell activation or memory markers. Unsupervised hierarchical clustering based on immune monitoring data segregated patients randomly. However, clustering according to T-cell activation or memory markers separated patients with clinical response and most patients with inflammatory toxicity into a common subgroup. CONCLUSION: Administration of CTLA4-blocking antibody tremelimumab to patients with advanced melanoma results in a subset of patients with long-lived tumor responses. T-cell activation and memory markers served as the only readout of the pharmacodynamic effects of this antibody in peripheral blood. CLINICAL TRIAL REGISTRATION NUMBER: NCT00086489.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/biosíntesis , Antígenos CD/inmunología , Melanoma/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Antígeno CTLA-4 , Análisis por Conglomerados , Femenino , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Sistema Inmunológico , Masculino , Melanoma/inmunología , Melanoma/metabolismo , Persona de Mediana Edad , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA